Mối liên hệ giữa chức năng thận và hiệu suất thể chất: Nghiên cứu Maastricht

Ioannis Bellos1, Smaragdi Marinaki2, Παγώνα Λάγιου1, Ioannis Boletis2, Annemarie Koster3, Marleen M. J. van Greevenbroek3, Simone J. P. M. Eussen3, Hans Savelberg4, Anke Wesselius5, Vassiliki Benetou1
1Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
2Department of Nephrology and Renal Transplantation, Laiko General Hospital, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 11527, Athens, Greece
3CAPRHI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
4Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
5Department of Epidemiology, Maastricht University, Maastricht, 6229ER, The Netherlands

Tóm tắt

Tóm tắt Nền tảng Suy thận đã liên quan đến việc giảm khả năng thể chất, mặc dù bằng chứng về hiệu suất thể chất của những cá nhân ở giai đoạn sớm của bệnh thận mãn tính (CKD) vẫn còn hạn chế. Phương pháp Dữ liệu cắt ngang được thu được từ Nghiên cứu Maastricht dựa trên quần thể và theo chiều dọc. Các mô hình hồi quy tuyến tính đa biến đã được thiết lập để đánh giá mối liên hệ giữa tỷ lệ lọc cầu thận ước lượng (eGFR) và các phân loại albumin niệu với kết quả bài kiểm tra hiệu suất thể chất. Kết quả Tổng cộng, 7396 người tham gia đã được đưa vào nghiên cứu. So với eGFR từ 60–90 ml/phút/1.73 m2, các giá trị < 60 ml/phút/1.73 m2 có liên quan với khoảng cách đi bộ trong 6 phút ngắn hơn đáng kể (β: − 13.04 m, khoảng tin cậy (CI) 95% − 19.95; − 6.13), thời gian kiểm tra đứng dậy từ ghế tồi tệ hơn (β: 0.91 giây, 95% CI 0.36; 1.47), lực nắm tối đa thấp hơn (β: − 0.83 kg, 95% CI − 1.50; − 0.15) và sức mạnh gập khuỷu tay (β: − 3.64 Nm, 95% CI − 7.11; − 0.16). Ngoài ra, eGFR > 90 ml/phút/1.73 m2 có liên quan đến khoảng cách đi bộ trong 6 phút ngắn hơn đáng kể (β: − 6.13 m, 95% CI − 9.44; − 2.82). Sự bài tiết albumin niệu > 30 mg/24 giờ có liên quan với khoảng cách đi bộ trong 6 phút ngắn hơn (β: − 12.48 m, 95% CI − 18.28; − 6.68), thời gian kiểm tra đứng dậy từ ghế tồi tệ hơn (β: 0.51 giây, 95% CI 0.11; 1.06), lực nắm tối đa thấp hơn (β: − 1.34 kg, 95% CI − 1.91; − 0.76) và sức mạnh gập khuỷu tay (β: − 3.31 Nm, 95% CI − 5.80; − 0.82). Kết luận Giảm eGFR và mức độ albumin niệu cao hơn có liên quan đến hiệu suất thể chất kém hơn, đặc biệt là khoảng cách đi bộ trong 6 phút ngắn hơn và sức mạnh cơ bắp thấp hơn. Mối quan hệ giữa eGFR và chức năng thể chất là phi tuyến tính, với cả các giá trị eGFR cao cũng có liên quan đến hiệu suất kém hơn, đặc biệt là trong bài kiểm tra đi bộ 6 phút. Tóm tắt hình ảnh

Từ khóa


Tài liệu tham khảo

Ezzatvar Y, Ramírez-Vélez R, Sáez De Asteasu ML, Martínez-Velilla N, Zambom-Ferraresi F, Izquierdo M, García-Hermoso A (2021) Physical function and all-cause mortality in older adults diagnosed with cancer: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci 76:1447–1453. https://doi.org/10.1093/GERONA/GLAA305

Dennison EM, Sayer AA (2017) Cooper C (2017) Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat Rev Rheumatol 136(13):340–347. https://doi.org/10.1038/nrrheum.2017.60

Demurtas J, Schoene D, Torbahn G, Marengoni A, Grande G, Zou L, Petrovic M, Maggi S, Cesari M, Lamb S, Soysal P, Kemmler W, Sieber C, Mueller C, Shenkin SD, Schwingshackl L, Smith L, Veronese N (2020) Physical activity and exercise in mild cognitive impairment and dementia: an umbrella review of intervention and observational studies. J Am Med Dir Assoc 21:1415-1422.e6. https://doi.org/10.1016/J.JAMDA.2020.08.031

Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, Celis-Morales C (2022) Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 13:86–99. https://doi.org/10.1002/JCSM.12783

Fuentes-Abolafio IJ, Stubbs B, Pérez-Belmonte LM, Bernal-López MR, Gómez-Huelgas R, Cuesta-Vargas AI (2020) Physical functional performance and prognosis in patients with heart failure: a systematic review and meta-analysis. BMC Cardiovasc Disord 20:1–23. https://doi.org/10.1186/S12872-020-01725-5/TABLES/2

Massierer D, Alsowayan W, Lima VP, Bourbeau J, Janaudis-Ferreira T (2020) Prognostic value of simple measures of physical function and muscle strength in COPD: A systematic review. Respir Med 161: . https://doi.org/10.1016/J.RMED.2019.105856

Wahid A, Manek N, Nichols M, Kelly P, Foster C, Webster P, Kaur A, Friedemann Smith C, Wilkins E, Rayner M, Roberts N, Scarborough P (2016) Quantifying the Association Between Physical Activity and Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis. J Am Heart Assoc 5: . https://doi.org/10.1161/JAHA.115.002495

Ware JE, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30:473–483. https://doi.org/10.1097/00005650-199206000-00002

Veronese N, Stubbs B, Volpato S, Zuliani G, Maggi S, Cesari M, Lipnicki DM, Smith L, Schofield P, Firth J, Vancampfort D, Koyanagi A, Pilotto A, Cereda E (2018) Association between gait speed with mortality, cardiovascular disease and cancer: a systematic review and meta-analysis of prospective cohort studies. J Am Med Dir Assoc 19:981-988.e7. https://doi.org/10.1016/J.JAMDA.2018.06.007

Giannitsi S, Bougiakli M, Bechlioulis A, Kotsia A, Michalis LK, Naka KK (2019) 6-minute walking test: a useful tool in the management of heart failure patients. Ther Adv Cardiovasc Dis 13:1–10. https://doi.org/10.1177/1753944719870084

Bohannon RW (2019) Grip strength: an indispensable biomarker for older adults. Clin Interv Aging 14:1681. https://doi.org/10.2147/CIA.S194543

Millor N, Lecumberri P, Gómez M, Martínez-Ramírez A, Izquierdo M (2013) An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit. J Neuroeng Rehabil 10: . https://doi.org/10.1186/1743-0003-10-86

Roongbenjawan N, Siriphorn A (2020) Accuracy of modified 30-s chair-stand test for predicting falls in older adults. Ann Phys Rehabil Med 63:309–315. https://doi.org/10.1016/J.REHAB.2019.08.003

Clarkson MJ, Bennett PN, Fraser SF, Warmington SA (2019) Exercise interventions for improving objective physical function in patients with end-stage kidney disease on dialysis: a systematic review and meta-analysis. Am J Physiol Renal Physiol 316:F856–F872. https://doi.org/10.1152/AJPRENAL.00317.2018

Schram MT, Sep SJS, Van Der Kallen CJ, Dagnelie PC, Koster A, Schaper N, Henry RMA, Stehouwer CDA (2014) The maastricht study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiol 29:439–451. https://doi.org/10.1007/S10654-014-9889-0

Muñoz-Bermejo L, Adsuar JC, Mendoza-Muñoz M, Barrios-Fernández S, Garcia-Gordillo MA, Pérez-Gómez J, Carlos-Vivas J (2021) Test-Retest Reliability of Five Times Sit to Stand Test (FTSST) in Adults: A Systematic Review and Meta-Analysis. Biology (Basel) 10: . https://doi.org/10.3390/BIOLOGY10060510

Csuka M, McCarty DJ (1985) Simple method for measurement of lower extremity muscle strength. Am J Med 78:77–81. https://doi.org/10.1016/0002-9343(85)90465-6

Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29. https://doi.org/10.1056/NEJMOA1114248

Premaratne E, MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith T, Jerums G (2005) Renal hyperfiltration in type 2 diabetes: effect of age-related decline in glomerular filtration rate. Diabetologia 48:2486–2493. https://doi.org/10.1007/S00125-005-0002-9

KDIGO (2013) Chapter 2: Definition, identification, and prediction of CKD progression. Kidney Int Suppl 3:63–72 . https://doi.org/10.1038/KISUP.2012.65

World Health Organization & International Diabetes Federation (2006) Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation. https://apps.who.int/iris/handle/10665/43588

van Dongen MC, Wijckmans-Duysens NEG, den Biggelaar LJ, Ocké MC, Meijboom S, Brants HA, de Vries JH, Feskens EJ, Bueno-de-Mesquita HB, Geelen A, DA Stehouwer C, Dagnelie PC, Eussen SJ (2019) The Maastricht FFQ: Development and validation of a comprehensive food frequency questionnaire for the Maastricht study. Nutrition 62:39–46. https://doi.org/10.1016/J.NUT.2018.10.015

Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, Clement DL, Coca A, De Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I, De Backer G, Heagerty AM, Agewall S, Bochud M, Borghi C, Boutouyrie P, Brguljan J, Bueno H, Caiani EG, Carlberg B, Chapman N, Cífková R, Cleland JGF, Collet JP, Coman IM, De Leeuw PW, Delgado V, Dendale P, Diener HC, Dorobantu M, Fagard R, Farsang C, Ferrini M, Graham IM, Grassi G, Haller H, Hobbs FDR, Jelakovic B, Jennings C, Katus HA, Kroon AA, Leclercq C, Lovic D, Lurbe E, Manolis AJ, McDonagh TA, Messerli F, Muiesan ML, Nixdorff U, Olsen MH, Parati G, Perk J, Piepoli MF, Polonia J, Ponikowski P, Richter DJ, Rimoldi SF, Roffi M, Sattar N, Seferovic PM, Simpson IA, Sousa-Uva M, Stanton AV, Van De Borne P, Vardas P, Volpe M, Wassmann S, Windecker S, Zamorano JL (2018) 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 39:3021–3104. https://doi.org/10.1093/EURHEARTJ/EHY339

Wolfgram DF, Garcia K, Evans G, Zamanian S, Tang R, Wiegmann T, Sharma R, Campbell R, Whittle J (2017) Association of albuminuria and estimated glomerular filtration rate with functional performance measures in older adults with chronic kidney disease. Am J Nephrol 45:172–179. https://doi.org/10.1159/000455388

Mello R, Johansen KL, Murray A, Davey C, Hart A (2022) Estimated GFR, Albuminuria, and Physical Function: The Brain in Kidney Disease (BRINK) Cohort Study. Kidney Med 4: . https://doi.org/10.1016/J.XKME.2022.100531

Yokoyama H, Shiraiwa T, Takahara M, Iwamoto M, Kuribayashi N, Nomura T, Yamada M, Sone H, Araki SI (2020) Applications of physical performance measures to routine diabetes care for frailty prevention concept: fundamental data with grip strength, gait speed, timed chair stand speed, standing balance, and knee extension strength. BMJ open diabetes Res care 8: . https://doi.org/10.1136/BMJDRC-2020-001562

Bowling CB, Bromfield SG, Colantonio LD, Gutiérrez OM, Shimbo D, Reynolds K, Wright NC, Curtis JR, Judd SE, Franch H, Warnock DG, McClellan W, Muntner P (2016) Association of reduced eGFR and albuminuria with serious fall injuries among older adults. Clin J Am Soc Nephrol 11:1236–1243. https://doi.org/10.2215/CJN.11111015

Kim TN, Lee EJ, Hong JW, Kim JM, Won JC, Kim MK, Noh JH, Ko KS, Rhee BD, Kim DJ (2016) Relationship Between Sarcopenia and Albuminuria: The 2011 Korea National Health and Nutrition Examination Survey. Medicine (Baltimore) 95: . https://doi.org/10.1097/MD.0000000000002500

Weiner DE, Bartolomei K, Scott T, Price LL, Griffith JL, Rosenberg I, Levey AS, Folstein MF, Sarnak MJ (2009) Albuminuria, cognitive functioning, and white matter hyperintensities in homebound elders. Am J Kidney Dis 53:438–447. https://doi.org/10.1053/J.AJKD.2008.08.022

Upadhyay A, Larson MG, Guo CY, Vasan RS, Lipinska I, O’Donnell CJ, Kathiresan S, Meigs JB, Keaney JF, Rong J, Benjamin EJ, Fox CS (2011) Inflammation, kidney function and albuminuria in the Framingham Offspring cohort. Nephrol Dial Transplant 26:920. https://doi.org/10.1093/NDT/GFQ471

Huang MJ, Wei RB, Zhao J, Su TY, Li QP, Yang X, Chen XM (2017) Albuminuria and Endothelial Dysfunction in Patients with Non-Diabetic Chronic Kidney Disease. Med Sci Monit 23:4447 . https://doi.org/10.12659/MSM.903660

Xu J, Knowler WC, Devereux RB, Yeh J, Umans JG, Begum M, Fabsitz RR, Lee ET (2007) Albuminuria within the “normal” range and risk of cardiovascular disease and death in American Indians: the Strong Heart Study. Am J Kidney Dis 49:208–216. https://doi.org/10.1053/J.AJKD.2006.10.017

de Souza RAF, da Silva EF, de Oliveira DM, Colodette RM, Cotta RMM, da Silva LS, Moreira TR (2022) Low-grade albuminuria and its relationship with cardiovascular disease risk in hypertensive and diabetic patients in primary health care. BMC Nephrol 23:1–9. https://doi.org/10.1186/S12882-022-02884-7/TABLES/5

Lee MK, Han K Do, Lee JH, Sohn SY, Hong OK, Jeong JS, Kim MK, Baek KH, Song KH, Kwon HS (2017) Normal-to-mildly increased albuminuria predicts the risk for diabetic retinopathy in patients with type 2 diabetes. Sci Rep 7: . https://doi.org/10.1038/S41598-017-11906-6

Bůzková P, Barzilay JI, Fink HA, Robbins JA, Cauley JA, Ix JH, Mukamal KJ (2019) Higher albumin:creatinine ratio and lower estimated glomerular filtration rate are potential risk factors for decline of physical performance in the elderly: the Cardiovascular Health Study. Clin Kidney J 12:788–794. https://doi.org/10.1093/CKJ/SFZ024

Walker SR, Brar R, Eng F, Komenda P, Rigatto C, Prasad B, Bohm CJ, Storsley LJ, Tangri N (2015) Frailty and physical function in chronic kidney disease: the CanFIT study. Can J kidney Heal Dis 2: . https://doi.org/10.1186/S40697-015-0067-4

Tsai YC, Chen HM, Hsiao SM, Chen CS, Lin MY, Chiu YW, Hwang SJ, Kuo MC (2017) Association of physical activity with cardiovascular and renal outcomes and quality of life in chronic kidney disease. PLoS One 12: . https://doi.org/10.1371/JOURNAL.PONE.0183642

Jung H, won, Choi IY, Shin DW, Han K, Yoo JE, Chun S, Yi Y, (2021) Association between physical performance and incidence of end-stage renal disease in older adults: a national wide cohort study. BMC Nephrol 22:1–10. https://doi.org/10.1186/S12882-021-02291-4/TABLES/4

Wilkinson TJ, Miksza J, Yates T, Lightfoot CJ, Baker LA, Watson EL, Zaccardi F, Smith AC (2021) Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: a UK Biobank study. J Cachexia Sarcopenia Muscle 12:586–598. https://doi.org/10.1002/JCSM.12705

Patel SS, Molnar MZ, Tayek JA, Ix JH, Noori N, Benner D, Heymsfield S, Kopple JD, Kovesdy CP, Kalantar-Zadeh K (2013) Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature. J Cachexia Sarcopenia Muscle 4:19–29. https://doi.org/10.1007/S13539-012-0079-1

Groothof D, Post A, Polinder-Bos HA, Erler NS, Flores-Guerrero JL, Kootstra-Ros JE, Pol RA, de Borst MH, Gansevoort RT, Gans ROB, Kremer D, Kieneker LM, Bano A, Muka T, Franco OH, Bakker SJL (2022) Muscle mass and estimates of renal function: a longitudinal cohort study. J Cachexia Sarcopenia Muscle 13:2031–2043. https://doi.org/10.1002/JCSM.12969

Yoshida S, Nakayama Y, Nakayama J, Chijiiwa N, Ogawa T (2022) Assessment of sarcopenia and malnutrition using estimated GFR ratio (eGFRcys/eGFR) in hospitalised adult patients. Clin Nutr ESPEN 48:456–463. https://doi.org/10.1016/J.CLNESP.2021.12.027

Dupuis ME, Nadeau-Fredette AC, Madore F, Agharazii M, Goupil R (2020) Association of glomerular hyperfiltration and cardiovascular risk in middle-aged healthy individuals. JAMA Netw open 3:e202377. https://doi.org/10.1001/JAMANETWORKOPEN.2020.2377

Han E, Lee YH, Lee BW, Kang ES, Cha BS (2017) Pre-sarcopenia is associated with renal hyperfiltration independent of obesity or insulin resistance: Nationwide Surveys (KNHANES 2008–2011). Medicine (Baltimore) 96: . https://doi.org/10.1097/MD.0000000000007165

Eriksen BO, Løchen ML, Arntzen KA, Bertelsen G, Eilertsen BAW, Von Hanno T, Herder M, Jenssen TG, Mathisen UD, Melsom T, Njølstad I, Solbu MD, Toft I, Mathiesen EB (2014) Subclinical cardiovascular disease is associated with a high glomerular filtration rate in the nondiabetic general population. Kidney Int 86:146–153. https://doi.org/10.1038/KI.2013.470

Dengel DR, Goldberg AP, Mayuga RS, Kairis GM, Weir MR (1996) Insulin resistance, elevated glomerular filtration fraction, and renal injury. Hypertens (Dallas, Tex 1979) 28:127–132 . https://doi.org/10.1161/01.HYP.28.1.127

Timmerman KL, Volpi E (2013) Endothelial function and the regulation of muscle protein anabolism in older adults. Nutr Metab Cardiovasc Dis 23 Suppl 1: . https://doi.org/10.1016/J.NUMECD.2012.03.013

Melsom T, Mathisen UD, Eilertsen BAW, Ingebretsen OC, Jenssen T, Njølstad I, Solbu MD, Toft I, Eriksen BO (2012) Physical exercise, fasting glucose, and renal hyperfiltration in the general population: the Renal Iohexol Clearance Survey in Tromsø 6 (RENIS-T6). Clin J Am Soc Nephrol 7:1801–1810. https://doi.org/10.2215/CJN.02980312

Tonneijck L, Muskiet MHA, Smits MM, Van Bommel EJ, Heerspink HJL, Van Raalte DH, Joles JA (2017) Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J Am Soc Nephrol 28:1023–1039. https://doi.org/10.1681/ASN.2016060666/-/DCSUPPLEMENTAL

Nakamura K, Yoshida D, Honda T, Hata J, Shibata M, Hirakawa Y, Furuta Y, Kishimoto H, Ohara T, Chen S, Kitazono T, Nakashima Y, Ninomiya T (2021) Midlife and late-life diabetes and sarcopenia in a general older Japanese population: The Hisayama Study. J Diabetes Investig 12:1899–1907. https://doi.org/10.1111/JDI.13550

Hellberg M, Höglund P, Svensson P, Abdulahi H, Clyne N (2017) Decline in measured glomerular filtration rate is associated with a decrease in endurance, strength, balance and fine motor skills. Nephrology (Carlton) 22:513–519. https://doi.org/10.1111/NEP.12810

Robinson ES, Fisher ND, Forman JP, Curhan GC (2010) Physical activity and albuminuria. Am J Epidemiol 171:515–521. https://doi.org/10.1093/AJE/KWP442

Park S, Lee S, Kim Y, Lee Y, Kang MW, Kim K, Kim YC, Han SS, Lee H, Lee JP, Joo KW, Lim CS, Kim YS, Kim DK (2022) Causal effects of physical activity or sedentary behaviors on kidney function: an integrated population-scale observational analysis and Mendelian randomization study. Nephrol Dial Transplant 37:1059–1068. https://doi.org/10.1093/NDT/GFAB153

Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, Crews DC, Doria A, Estrella MM, Froissart M, Grams ME, Greene T, Grubb A, Gudnason V, Gutiérrez OM, Kalil R, Karger AB, Mauer M, Navis G, Nelson RG, Poggio ED, Rodby R, Rossing P, Rule AD, Selvin E, Seegmiller JC, Shlipak MG, Torres VE, Yang W, Ballew SH, Couture SJ, Powe NR, Levey AS (2021) New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N Engl J Med 385:1737–1749. https://doi.org/10.1056/NEJMOA2102953/SUPPL_FILE/NEJMOA2102953_DISCLOSURES.PDF