Association of Siderite with Iron Sulfides and Silicates in Rocks of the Mikheevskoe Cu(Mo,Au) Porphyry Deposit (Southern Urals)

Pleiades Publishing Ltd - Tập 65 - Trang 332-345 - 2023
S. V. Pribavkin1, E. I. Soroka1, O. B. Azovskova1, I. V. Smoleva2, L. V. Leonova1, I. A. Gottman1, S. G. Sustavov3, M. Yu. Rovnushkin1
1Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Institute of Geology, Komi Scientific Center, Russian Academy of Sciences, Syktyvkar, Russia
3Ural State Mining University, Yekaterinburg, Russia

Tóm tắt

The mineral association of siderite with Cu–Fe sulfides, cronstedtite, and goethite were first recognized when studying the Mikheevskoe Cu(Mo,Au)–porphyry deposit. This association is confined to fault zones, where it fills a network of mineralized fractures developed on porphyry- and argillizite-type ores. Minerals of this association were also identified in some argillizite samples of this deposit. The formation conditions of this mineral association and its relation to the evolution of the Late Paleozoic porphyry system or other endogenic–exogenic processes manifested during the subsequent geological history of the study area were studied. The integrated research included microprobe analysis and the measurement of O and C stable isotopes in minerals of the studied association in the “Geoanalitik” (Yekaterinburg) and “Geonauka” (Syktyvkar) Centers for Collective Use. The study of mineral compositions and their relationships indicates that the studied mineral association deposited at temperature of about 70°C from neutral or low-acid solutions with varying $${\text{CO}}_{3}^{{2 - }}$$ , HS–, and aSiO2 (aq) contents. The measurements of δ13C (from –5.5 to –18.2‰) and δ18O (from 20.4 to 33.4‰) values in siderite made it possible to calculate the composition of a mineral-forming fluid. It was established that such a fluid has the following parameters: δ18O H2O from –3 to +10‰ and δ13C CO2 from 15 to –28‰. It could correspond to magmatogenic water fluids mixed with Corg-bearing surface water. Based on the obtained results, it is suggested that this mineral association is related to argillizites, the development of which occurred at the last stage of endogenic mineral formation at the Mikheevskoe deposit. Nevertheless, it is not excluded that it may be related with other low-T hydrothermal processes at the stage of Meso-Cenozoic tectonomagmatic activation of the Urals. There is no evidence of the relation of the studied mineral association with weathering crusts.

Tài liệu tham khảo

Andreev, B.S., Pirit zolotorudnykh mestorozhdenii (Pyrite from Gold-Ore Deposits), Moscow: Nauka, 1992 [in Russian]. Azovskova, O.B., Plotinskaya, O.Y., Rovnushkin, M.Y., and Gemel, V.A., Argillic alteration of the Mikheevskoe porphyry copper deposit (South Urals, Russia), in Proc. 15th SGA Biennial Meet., 2019, vol. 2, pp. 1038–1041. Azovskova, O.B., Rovnushkin, M.Yu., and Khalilova, A.F., Characteristic features of argillisite metasomatosis in productive granitoids of the Mikheevskoe copper-porphyry deposit, Southern Urals, in Mater. III mezhd. geol. konf. “Granity i evolyutsiya zemli: mantiya i kora v granitoobrazovanii” (Proc. III Int. Geol. Conf. “Granites and Evolution of the Earth: Mantle and Crust in the Granite Formation”), Ekaterinburg, 2017, pp. 6–8. Barannikov, A.G., Hypogene-supergene type of gold mineralization in the Urals, Izv. UGGU, 1998, vol. 8, pp. 94–98. Barannikov, A.G. and Azovskova, O.B., Gold-bearing objects of hypogene-supergene type in the Urals. Convergence of signs of their difference from ore-bearing weathering crusts, News Ural State Mining Univ., 2017, vol. 2 (46), pp. 13–22. Barannikov, A.G. and Ugryumov, A.N., Problems of endogenous gold ore genesis during the Mesozoic in the Urals, Litosfera, 2003, no. 1, pp. 13–26. Belogub, E.V., Cronstedtite from the Uzelga copper-sulfide deposit (Southern Urals), in Mater. IV Vseross. soveshch. “Mineralogiya Urala-2003” (Proc. IV All-Russ. Conf. “Mineralogy of the Urals-2003”), Miass, 2003, vol. II, pp. 130–134. Bottinga, Y., Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor, Geochim. Cosmochim. Acta, 1969, vol. 33, no. 1, pp. 49–64. https://doi.org/10.1016/0016-7037(69)90092-1 Brett, P.R. and Yund, R.A., Sulfur-rich bornites, Am. Mineral., 1964, vol. 49, pp. 1084–1099. Chacko, T. and Deines, P., Theoretical calculation of oxygen isotope fractionation factors in carbonate systems, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 3642–3660. https://doi.org/10.1016/j.gca.2008.06.001 Chen, T.T. and Cabri, L.J., Mineralogical overview of iron control in hydrometallurgical processing, in Iron Control in Hydrometallurgy, Dutrizac, J.E. and Monhemius, A.J., Eds., Chichester, U.K. 1986, pp. 20–55. Dyl, K.A., Manning, C.E., and Young, E.D., The implications of cronstedtite formation in water-rich planetesimals and asteroids, Astrobiology Sci. Conf. Abstr., 2010, 5627. Frondel, C., Polytypism in cronstedtite, Am. Mineral., 1962, vol. 47, pp. 781–783. Galimov, E.M., Geokhimiya stabil’nykh izotopov ugleroda (Geochemistry of Stable Carbon Isotopes), Moscow, Nedra, 1968 [in Russian]. Golyshev, S.I., Padalko, N.L., and Pechenkin, S.A., Fractionation of stable oxygen and carbon isotopes in carbonate systems, Geochem. Int., 1981, vol. 18, pp. 85–99. Grabezhev, A.I., Sr–Nd–C–O–H–S isotope-geochemical description of South Urals porphyry-copper fluid-magmatic systems: Probable sources of matter, Litosfera, 2009, no. 6, pp. 66–89. Grabezhev, A.I. and Belgorodskii, E.A., Produktivnye granitoidy i metasomatity medno-porfirovykh mestorozhdenii (Productive Granitoids and Metasomatic Rocks at Copper-Porphyry Deposits), Nauka: Ekaterinburg, 1992 [in Russian]. Grabezhev, A.I. and Ronkin, Yu.L., U–Pb age of zircons from ore-bearing granitoids of the South Urals porphyry-copper deposits, Litosfera, 2011, no. 3, pp. 104–116. Gryaznov, O.N., Barannikov, A.G., and Savel’eva, K.P., Non-traditional types of gold-argillicite mineralization in Mesozoic structures, Izv. UGGU, 2007, vol. 22, pp. 41–53. Guo, H. and Barnard, A.S., Thermodynamic modelling of nanomorphologies of hematite and goethite, J. Mater. Chem., 2011, vol. 21, pp. 11566–11557. https://doi.org/10.1039/C1JM10381D Hu, R.Z., Su, W.C., Bi, X.W., Zhi-Guang, T., and Hofsta, A.H., Geology and geochemistry of Carlin-type gold deposits in China, Mineral. Deposita, 2002, vol. 37, nos. 3–4, pp. 378–392. Hybler, J. and Sejkora, J., Polytypism of cronstedtite from Chyňava, Czech Republic, J. Geosci., 2017, vol. 62, pp. 137–146. https://doi.org/10.3190/jgeosci.239 John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H., Gray, Floyd., Graybeal, F.T., Mars, J.C., McPhee, D.K., Seal, R.R., Taylor, R.D., and Vikre, P.G., Porphyry Copper Deposit Model, Chap. B of Mineral Deposit Models for Resource Assessment: Scientific Investigations Report 2010–5070–B, Virginia: U.S. Geol. Surv., 2010. Kalacheva, E.G., Kotenko, T.A., Kotenko, L.V., and Voloshina, E.V., The geochemistry of thermal waters and fumarolic gases on Shikotan Island, Kuril Islands, Volcanol. Seismol., 2014, no. 5, pp. 12–26. Krivtsov, A.I., Migachev, I.F., and Popov, V.S., Medno-porfirovye mestorozhdeniya mira (Copper-Porphyry Deposits of the World), Moscow: Nedra, 1986 [in Russian]. Lavrushin, V.Yu., Guliev, I.S., Kikvadze, O.E., Aliev, Ad.A., Pokrovskii, B.G., and Polyak, B.G., Waters from mud volcanoes of Azerbaijan: Isotopic–geochemical properties and generation environments, Lithol. Miner. Resour., 2015, no. 1, pp. 1–25. López-García, J.A., Manteca, J.I., Prieto, A.C., and Calvo, B., Primera aparición en España de cronstedtita. Caracterización structural, Bol. Soc. Española Mineral., 1992, vol. 15–1, pp. 21–25. Lur’e, A.M. and Gablina, I.F., Sulfide zonation at copper deposits of the red formation, Geokhimiya, 1976, no. 1, pp. 109–115. McAlister, J.A. and Kettler, R.M., Metastable equilibria among dicarboxylic acids and the oxidation state during acqueous alteration on the CM2 chondrite parent body, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 233–241. https://doi.org/10.1016/j.gca.2007.10.008 Mel’nik, Yu.P., Genezis dokembriiskikh poloschatykh zhelezistykh formatsii (Genesis of Precambrian Banded Iron Formations), Kiev: Nauk. dumka, 1986 [in Russian]. Mozley, P.S., Relation between depositional environment and the elemental composition of early diagenetic siderite, Geology, 1989, vol. 17, no. 8, pp. 704–706. Noveishaya tektonika Urala (The Newest Tectonics of the Urals), Sigov, A.P. and Sigov, V.A, Eds., Saratov: Saratov. Gos. Univ., 1975, vol. V. Pignatelli, I., Mugnaioli, E., Hybler, J., Mosser-Ruck, R., Cathelineau, M., and Michau, N., A multi-technique characterisation of cronstedtite synthetized by iron-clay interaction in a step by step cooling procedure, Clays Clay Miner., 2013, vol. 61, pp. 277–289. https://doi.org/10.1346/CCMN.2013.0610408 Plotinskaya, O.Y., Azovskova, O.B., Abramov, S.S., Groznova, E.O., Novoselov, K.A., Seltmann, R., and Spratt, J., Precious metals assemblages at the Mikheevskoe porphyry copper deposit (South Urals, Russia) as proxies of epithermal overprinting, Ore Geol. Rev., 2018, vol. 94, pp. 239–260. https://doi.org/10.1016/j.oregeorev.2018.01.025 Plumhoff, A.M., Mathur, R., Milovský, R., and Majzlan, J., Fractionation of the copper, oxygen and hydrogen isotopes between malachite and aqueous phase, Geochim. Cosmochim. Acta, 2021, vol. 300, pp. 246–257. https://doi.org/10.1016/j.gca.2021.02.009 Popov, V.S., Geologiya i genezis medno- i molibden-porfirovykh mestorozhdenii (Geology and Genesis of Porphyry Copper and Molybdenum Deposits), Moscow: Nauka, 1977 [in Russian]. Pujol-Solà, N., Sabaté, A.A., Schamuells, S., and Ca-sals, S.A., Primary and secondary deposits from the Crisoleja area (Pb—Zn–Ag–Sn), La Unión, Murcia, Spain, in Proc. 12th SGA Biennial Meet. “Mineral Deposit Research for a High-Tech World,” Uppsala, Sweden, 2013. Schulte M., Schock E. Coupled organic synthesis and mineral alteration on the meterorite parent bodies, Meteoritic Planet. Sci., 2004, vol. 39, pp. 1577–1590. https://doi.org/10.1111/j.1945-5100.2004.tb00128.x Shargorodskii, B.M., Novikov, I.M., and Aksenov, S.A., Mikheevskoe deposit of copper-porphyry ores in the Southern Urals, Otech. Geol., 2005, no. 2, pp. 57–61. Sigov, A.P., Metallogeniya mezozoya i kainozoya Urala (Metallogeny of the Mesozoic and Cenozoic of the Urals), Moscow: Nedra, 1969 [in Russian]. Sillitoe, R.M., Erosion and collapse of volcanoes: causes of telescoping in intrusion-centered ore deposits, Geology, 1994, vol. 22, pp. 945–948. https://doi.org/10.1130/0091-7613(1994)022<0945:EACOVC>2.3.CO;2 Sillitoe, R.H., Porphyry copper systems, Econ. Geol., 2010, vol. 105, no. 1, pp. 3–41. https://doi.org/10.2113/gsecongeo.105.1.3 Simpson, M.P., Mauk, J.L., and Kendrick, R.G., Telescoped porphyry-style and epithermal veins and alteration at the central Maratoto valley prospect, Hauraki Goldfield, New Zealand, N. Z. J. Geol. Geophys., 2004, vol. 47, no. 1, pp. 39–56. https://doi.org/10.1080/00288306.2004.9515036 Taylor, H.P., Frechen, J., and Degens, E.T., Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden, Geochim. Cosmochim. Acta, 1967, vol. 31, pp. 407–430. https://doi.org/10.1016/0016-7037(67)90051-8 Tessalina, S.G. and Plotinskaya, O.Yu., Silurian to Carboniferous Re-Os molybdenite ages of the Kalinovskoe, Mikheevskoe and Talitsa Cu- and Mo porphyry deposits in the Urals: Implications for geodynamic setting, Ore Geol. Rev., 2017, vol. 85, pp. 174–180. https://doi.org/10.1016/j.oregeorev.2016.09.005 Tevelev, A.V., Kosheleva, I.A., Burshtein, E.F., Tevelev, A.V., Popov, V.S., Kuznetsov, I.E., Korotaev, M.V., Georgievskii, B.V., Osipova, T.A., Pravikova, N.V., and Sereda, V.V., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000. Izdanie vtoroe. Seriya Yuzhno-Ural’skaya. List N-41-XXV (Kartaly). Ob”yasnitel’naya zapiska (The 1 : 200 000 State Geological Map of the Russian Federation (2nd ed.). Ser. Southern Urals. Sheet N-41-XXV (Kartaly). Explanatory Note), Moscow: Mosk. Fil. Vseross. Nauchno-Issled. Geol. Inst., 2018 [in Russian]. Timofeeva, Z.V., Kuznetsova, L.D., and Dontsova, E.I., The O isotopes and processes of siderite formation, Geokhimiya, 1976, no. 10, pp. 1462–1475. Trubachev, A.I., Korol’kov, A.T., and Radomskaya, T.A., Parageneses of minerals and forms of their recognition reflecting the stages of formation of cupriferous sandstones and shales deposits, Bull. Tomsk Polytech. Univ. Geo Assets Eng., 2019, vol. 330, no. 9, pp. 70–89. https://doi.org/10.18799/24131830/2019/9/2257 Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., and Strauss, H., 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 1999, vol. 161, nos. 1–3, pp. 59–88. https://doi.org/10.1016/S0009-2541(99)00081-9 Vikent’ev, I.V., Usloviya formirovaniya i metamorfizm kolchedannykh rud (Formation Conditions and Metamorphism of Pyrite Ores), Moscow: Nauchn. Mir, 2004 [in Russian]. Volodin, R.N., Chechetkin, V.S., Bogdanov, Yu.V., Narkelyun, L.F., and Trubachev, A.I., The Udokan deposit of cupriferous sandstones (Eastern Siberia), Geol. Rudn. Mestorozhd., 1994, vol. 36, no. 1, pp. 1–30. Wilson, J.C., Benbow, S., Sasamoto, H., Savage, D., and Watson, C., Thermodynamic and fully-coupled reactive transport models of a steel-bentonite interface, Appl. Geochem., 2015, vol. 61, pp. 10–28. https://doi.org/10.1016/j.apgeochem.2015.05.005 Yund, R.A. and Kullerud, G., Thermal stability assemblages in the Cu–Fe–S system, J. Petrol., 1966, vol. 7, pp. 454–488. https://doi.org/10.1093/petrology/7.3.454 Zhang, C.L., Horita, J., Cole, D.R., Zhou, J., Lovley, D.R., and Phelps, T.J., Temperature-dependent oxygen and carbon isotope fractionation of biogenic siderite, Geochim. Cosmochim. Acta, 2001, vol. 65, pp. 2257–2271. https://doi.org/10.1016/S0016-7037(01)00596-8 Zolotov, M.Y., Formation of brucite and cronstedtite bearing mineral assemblages on Ceres, Icarus, 2014, vol. 228, pp. 13–26.