Association between the expression of vascular endothelial growth factors and metabolic syndrome or its components: a systematic review and meta-analysis
Tóm tắt
Several studies have linked vascular endothelial growth factors (VEGFs) with metabolic syndrome or its components. However, there has been no systematic appraisal of the findings of these studies to date. The current systematic review and meta-analysis was conducted to explore this association. PubMed, EMBASE, the Cochrane library, and clinical trials registries were used to retrieve peer-reviewed clinical studies that had evaluated the association of VEGFs with metabolic syndrome or its components without applying language and date restrictions. The final search was performed on 29 September 2017. We included 32 studies in this systematic review and meta-analysis, of which 16 studies (19 study arms) were included in the meta-analysis and remaining studies were qualitatively assessed. Overall, VEGF-A, VEGF-B and VEGF-C were strongly associated with metabolic syndrome or its components. The components of metabolic syndrome varied in their association. Obesity was not correlated with increased VEGF-A expression (p = 0.12), whereas VEGF-B and VEGF-C expression was significantly higher in those with obesity. In contrast, hyperglycemia in type 1 diabetes was strongly associated with increased VEGF-A levels (p < 0.00001), as was type 2 diabetes (p = 0.0006). The studies included in the qualitative analysis similarly showed an increase in VEGF family expression in people with metabolic syndrome, and with its components. The increased concentrations of vascular endothelial growth factors are variably associated with metabolic syndrome or its components. Each VEGF protein has a unique set of associations with the disease state.
Tài liệu tham khảo
Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014. https://doi.org/10.1155/2014/943162.
Muniyappa R, Iantorno M, Quon MJ. An integrated view of insulin resistance and endothelial dysfunction. Endocrinol Metab Clin North Am. 2008;37:685–711. https://doi.org/10.1016/j.ecl.2008.06.001.
Olofsson B, Korpelainen E, Pepper MS, et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA. 1998;95:11709–14.
Holmes DIR, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6:209. https://doi.org/10.1186/gb-2005-6-2-209.
Elias I, Franckhauser S, Ferré T, et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes. 2012;61:1801–13. https://doi.org/10.2337/db11-0832.
Miyazawa-Hoshimoto S, Takahashi K, Bujo H, et al. Elevated serum vascular endothelial growth factor is associated with visceral fat accumulation in human obese subjects. Diabetologia. 2003;46:1483–8. https://doi.org/10.1007/s00125-003-1221-6.
García de la Torre N, Rubio MA, Bordiú E, et al. Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. J Clin Endocrinol Metab. 2008;93:4276–81. https://doi.org/10.1210/jc.2007-1370.
Zafar MI, Zheng J, Kong W, et al. The role of vascular endothelial growth factor-B in metabolic homoeostasis: current evidence. Biosci Rep. 2017. https://doi.org/10.1042/bsr20171089.
Gomez-Ambrosi J, Catalan V, Rodriguez A, et al. Involvement of serum vascular endothelial growth factor family members in the development of obesity in mice and humans. J Nutr Biochem. 2010;21:774–80. https://doi.org/10.1016/j.jnutbio.2009.05.004.
Tinahones FJ, Coin-Araguez L, Mayas MD, et al. Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels. BMC Physiol. 2012;12:4. https://doi.org/10.1186/1472-6793-12-4.
Robciuc MR, Kivela R, Williams IM, et al. VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab. 2016;23:712–24. https://doi.org/10.1016/j.cmet.2016.03.004.
Karaman S, Hollmén M, Robciuc MR, et al. Blockade of VEGF-C and VEGF-D modulates adipose tissue inflammation and improves metabolic parameters under high-fat diet. Mol Metab. 2015;4:93–105. https://doi.org/10.1016/j.molmet.2014.11.006.
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100. https://doi.org/10.1371/journal.pmed.1000100.
Thomas J, Brunton J, Graziosi S. EPPI-Reviewer 4.0: software for research synthesis. London: EPPI-Centre Software, Social Science Research Unit, Institute of Education, University of London; 2010.
Study Quality Assessment Tools | National Heart, Lung, and Blood Institute (NHLBI). https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed 12 Feb 2018.
Rohatgi A. WebPlotDigitizer. Texas: Austin; 2017.
The Nordic Cochrane Centre. Review manager (RevMan). Copenhagen: The Cochrane Collaboration; 2014.
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34. https://doi.org/10.1136/bmj.315.7109.629.
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010. https://doi.org/10.18637/jss.v036.i03.
Du J, Li R, Xu L, et al. Increased serum chemerin levels in diabetic retinopathy of type 2 diabetic patients. Curr Eye Res. 2016;41:114–20. https://doi.org/10.3109/02713683.2015.1004718.
Erman H, Gelisgen R, Cengiz M, et al. The association of vascular endothelial growth factor, metalloproteinases and their tissue inhibitors with cardiovascular risk factors in the metabolic syndrome. Eur Rev Med Pharmacol Sci. 2016;20:1015–22.
Guo L, Jiang F, Tang Y-T, et al. The association of serum vascular endothelial growth factor and ferritin in diabetic microvascular disease. Diabetes Technol Ther. 2014;16:224–34. https://doi.org/10.1089/dia.2013.0181.
Hanefeld M, Appelt D, Engelmann K, et al. Serum and plasma levels of vascular endothelial growth factors in relation to quality of glucose control, biomarkers of inflammation, and diabetic nephropathy. Horm Metab Res. 2016;48:529–34. https://doi.org/10.1055/s-0042-106295.
Jain A, Saxena S, Khanna VK, et al. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus. Mol Vis. 2013;19:1760–8.
Jesmin S, Akter S, Rahman MM, et al. Disruption of components of vascular endothelial growth factor angiogenic signalling system in metabolic syndrome. Findings from a study conducted in rural Bangladeshi women. Thromb Haemost. 2013;109:696–705. https://doi.org/10.1160/th12-09-0654.
Kakizawa H, Itoh M, Itoh Y, et al. The relationship between glycemic control and plasma vascular endothelial growth factor and endothelin-1 concentration in diabetic patients. Metabolism. 2004;53:550–5.
Kubisz P, Chudy P, Stasko J, et al. Circulating vascular endothelial growth factor in the normo- and/or microalbuminuric patients with type 2 diabetes mellitus. Acta Diabetol. 2010;47:119–24. https://doi.org/10.1007/s00592-009-0127-2.
Lim HS, Blann AD, Chong AY, et al. Plasma vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in diabetes: implications for cardiovascular risk and effects of multifactorial intervention. Diabetes Care. 2004;27:2918–24.
Litvinova L, Atochin D, Vasilenko M, et al. Role of adiponectin and proinflammatory gene expression in adipose tissue chronic inflammation in women with metabolic syndrome. Diabetol Metab Syndr. 2014;6:137. https://doi.org/10.1186/1758-5996-6-137.
Loebig M, Klement J, Schmoller A, et al. Evidence for a relationship between VEGF and BMI independent of insulin sensitivity by glucose clamp procedure in a homogenous group healthy young men. PLoS ONE. 2010;5:e12610. https://doi.org/10.1371/journal.pone.0012610.
MacEneaney OJ, Kushner EJ, Westby CM, et al. Endothelial progenitor cell function, apoptosis, and telomere length in overweight/obese humans. Obesity. 2010;18:1677–82. https://doi.org/10.1038/oby.2009.494.
Mahdy RA, Nada WM. Evaluation of the role of vascular endothelial growth factor in diabetic retinopathy. Ophthalmic Res. 2011;45:87–91. https://doi.org/10.1159/000317062.
Marek N, Mysliwiec M, Raczynska K, et al. Increased spontaneous production of VEGF by CD4+ T cells in type 1 diabetes. Clin Immunol. 2010;137:261–70. https://doi.org/10.1016/j.clim.2010.07.007.
Mirhafez SR, Pasdar A, Avan A, et al. Cytokine and growth factor profiling in patients with the metabolic syndrome. Br J Nutr. 2015;113:1911–9. https://doi.org/10.1017/s0007114515001038.
Mirhafez SR, Tajfard M, Avan A, et al. Association between serum cytokine concentrations and the presence of hypertriglyceridemia. Clin Biochem. 2016;49:750–5. https://doi.org/10.1016/j.clinbiochem.2016.03.009.
Mysliwiec M, Balcerska A, Zorena K, et al. The role of vascular endothelial growth factor, tumor necrosis factor alpha and interleukin-6 in pathogenesis of diabetic retinopathy. Diabetes Res Clin Pract. 2008;79:141–6. https://doi.org/10.1016/j.diabres.2007.07.011.
Nandy D, Mukhopadhyay D, Basu A. Both vascular endothelial growth factor and soluble Flt-1 are increased in type 2 diabetes but not in impaired fasting glucose. J Investig Med. 2010;58:804–6.
Ozturk BT, Bozkurt B, Kerimoglu H, et al. Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Mol Vis. 2009;15:1906–14.
Ruszkowska-Ciastek B, Sokup A, Socha MW, et al. A preliminary evaluation of VEGF-A, VEGFR1 and VEGFR2 in patients with well-controlled type 2 diabetes mellitus. J Zhejiang Univ Sci B. 2014;15:575–81. https://doi.org/10.1631/jzus.b1400024.
Schlingemann RO, Van Noorden CJF, Diekman MJM, et al. VEGF levels in plasma in relation to platelet activation, glycemic control, and microvascular complications in type 1 diabetes. Diabetes Care. 2013;36:1629–34. https://doi.org/10.2337/dc12-1951.
Seckin D, Ilhan N, Ilhan N, Ertugrul S. Glycaemic control, markers of endothelial cell activation and oxidative stress in children with type 1 diabetes mellitus. Diabetes Res Clin Pract. 2006;73:191–7. https://doi.org/10.1016/j.diabres.2006.01.001.
Siervo M, Ruggiero D, Sorice R, et al. Angiogenesis and biomarkers of cardiovascular risk in adults with metabolic syndrome. J Intern Med. 2010;268:338–47. https://doi.org/10.1111/j.1365-2796.2010.02255.x.
Siervo M, Ruggiero D, Sorice R, et al. Body mass index is directly associated with biomarkers of angiogenesis and inflammation in children and adolescents. Nutr Burbank Los Angel Cty Calif. 2012;28:262–6. https://doi.org/10.1016/j.nut.2011.06.007.
Silha JV, Krsek M, Hana V, et al. The effects of growth hormone status on circulating levels of vascular growth factors. Clin Endocrinol Oxf. 2005;63:79–86. https://doi.org/10.1111/j.1365-2265.2005.02303.x.
Suguro T, Watanabe T, Kodate S, et al. Increased plasma urotensin-II levels are associated with diabetic retinopathy and carotid atherosclerosis in Type 2 diabetes. Clin Sci. 2008;115:327–34. https://doi.org/10.1042/cs20080014.
Valabhji J, Dhanjil S, Nicolaides AN, et al. Correlation between carotid artery distensibility and serum vascular endothelial growth factor concentrations in type 1 diabetic subjects and nondiabetic subjects. Metabolism. 2001;50:825–9.
Wada H, Satoh N, Kitaoka S, et al. Soluble VEGF receptor-2 is increased in sera of subjects with metabolic syndrome in association with insulin resistance. Atherosclerosis. 2010;208:512–7. https://doi.org/10.1016/j.atherosclerosis.2009.07.045.
Wu J, Wei H, Qu H, et al. Plasma vascular endothelial growth factor B levels are increased in patients with newly diagnosed type 2 diabetes mellitus and associated with the first phase of glucose-stimulated insulin secretion function of beta-cell. J Endocrinol Invest. 2017. https://doi.org/10.1007/s40618-017-0677-z.
Zorena K, Myśliwska J, Myśliwiec M, et al. Association between vascular endothelial growth factor and hypertension in children and adolescents type I diabetes mellitus. J Hum Hypertens. 2010;24:755–62. https://doi.org/10.1038/jhh.2010.7.
Doupis J, Rahangdale S, Gnardellis C, et al. Effects of diabetes and obesity on vascular reactivity, inflammatory cytokines, and growth factors. Obesity. 2011;19:729–35. https://doi.org/10.1038/oby.2010.193.
7.7.3.5 Medians and interquartile ranges. http://handbook-5-1.cochrane.org/chapter_7/7_7_3_5_mediansand_interquartile_ranges.htm. Accessed 1 Feb 2018.
Sun CY, Lee CC, Hsieh MF, et al. Clinical association of circulating VEGF-B levels with hyperlipidemia and target organ damage in type 2 diabetic patients. J Biol Regul Homeost Agents. 2014;28:225–36.
Hagberg CE, Falkevall A, Wang X, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature. 2010;464:917–21. https://doi.org/10.1038/nature08945.
Hagberg CE, Mehlem A, Falkevall A, et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature. 2012;490:426–30. https://doi.org/10.1038/nature11464.
Velagapudi S, Yalcinkaya M, Piemontese A, et al. VEGF-A regulates cellular localization of SR-BI as well as transendothelial transport of HDL but not LDL. Arterioscler Thromb Vasc Biol. 2017;37:794–803. https://doi.org/10.1161/atvbaha.117.309284.
Sandhofer A, Tatarczyk T, Kirchmair R, et al. Are plasma VEGF and its soluble receptor sFlt-1 atherogenic risk factors? Cross-sectional data from the SAPHIR study. Atherosclerosis. 2009;206:265–9. https://doi.org/10.1016/j.atherosclerosis.2009.01.031.
Ghazizadeh H, Fazilati M, Pasdar A, et al. Association of a vascular endothelial growth factor genetic variant with serum VEGF level in subjects with metabolic syndrome. Gene. 2017;598:27–31. https://doi.org/10.1016/j.gene.2016.10.034.
Rafii S, Carmeliet P. VEGF-B improves metabolic health through vascular pruning of fat. Cell Metab. 2016;23:571–3. https://doi.org/10.1016/j.cmet.2016.03.012.