Association between intracortical microarchitecture and the compressive fatigue life of human bone: A pilot study

Bone Reports - Tập 12 - Trang 100254 - 2020
Lindsay L. Loundagin1,2, Ifaz T. Haider1,2, David M.L. Cooper3, W. Brent Edwards1,2
1Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
2McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
3Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, 105 Administration Place, Saskatoon, SK S7N 5A2, Canada

Tài liệu tham khảo

Akkus, 2005, Sterilization by gamma radiation impairs the tensile fatigue life of cortical bone by two orders of magnitude, J. Orthop. Res., 23, 1054, 10.1016/j.orthres.2005.03.003 Barth, 2010, On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone, Bone, 46, 1475, 10.1016/j.bone.2010.02.025 Barth, 2011, Characterization of the effects of X-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone, Biomaterials, 32, 8892, 10.1016/j.biomaterials.2011.08.013 Bernhard, 2013, Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women, Osteoporos. Int., 24, 2671, 10.1007/s00198-013-2374-x Boden, 2001, Low-risk stress fractures, Am. J. Sports Med., 29, 100, 10.1177/03635465010290010201 Burr, 1990, Experimental stress fractures of the tibia, J Bone Jt Surgery, Br, 72, 370, 10.1302/0301-620X.72B3.2341429 Burr, 1998, Does microdamage accumulation affect the mechanical properties of bone ?, J. Biomech., 31, 337, 10.1016/S0021-9290(98)00016-5 Busse, 2010, Reorganization of the femoral cortex due to age-, sex-, and endoprosthetic-related effects emphasized by osteonal dimensions and remodeling, J Biomed Mater Res - Part A, 92, 1440 Caler, 1989, Bone creep-fatigue damage accumulation, J. Biomech., 22, 625, 10.1016/0021-9290(89)90013-4 Carter, 1976, Fatigue life of compact bone—I: effects of stress amplitude, temperature and density, J. Biomech., 9, 27, 10.1016/0021-9290(76)90136-6 Carter, 1977, Compact bone fatigue damage. 1. Residual strength and stiffness, J. Biomech., 10, 325, 10.1016/0021-9290(77)90005-7 Carter, 1977, Compact bone fatigue damage: a microscopic examination, Clin. Orthop. Relat. Res., 127, 265 Carter, 1981, Uniaxial fatigue of human cortical bone. The influence of tissue physical characteristics, J. Biomech., 14, 461, 10.1016/0021-9290(81)90096-8 Carter, 2013, Variation in osteocyte lacunar morphology and density in the human femur — a synchrotron radiation micro-CT study, Bone, 52, 126, 10.1016/j.bone.2012.09.010 Cooper, 2003, Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography, Anat. Rec., 274, 169, 10.1002/ar.b.10024 Crabtree, 2002, Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study, Osteoporos. Int., 13, 48, 10.1007/s198-002-8337-y Currey, 1962, Stress concentrations in bone, Q J Microsc Sci, 103, 111 Currey, 1997, Effects of ionizing radiation on the mechanical properties of human bone, J. Orthop. Res., 15, 111, 10.1002/jor.1100150116 Dickerson, 1981, The mechanical properties of bone in osteoporosis, J Bone Jt Surg Br, 63, 233, 10.1302/0301-620X.63B2.7217148 Dong, 2014, 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images, Bone, 60, 172, 10.1016/j.bone.2013.12.008 Doube, 2010, BoneJ: free and extensible bone image analysis in ImageJ, Bone, 47, 1076, 10.1016/j.bone.2010.08.023 Edwards, 2018, Modeling overuse injuries in sport as a mechanical fatigue phenomenon, Exerc. Sport Sci. Rev., 46, 224, 10.1249/JES.0000000000000163 Evans, 1974, Relations of the compressive properties of human cortical bone to histological structure and calcification, J. Biomech., 7, 1, 10.1016/0021-9290(74)90064-5 Faulkner, 2006, Femur strength index predicts hip fracture independent of bone density and hip axis length, Osteoporos. Int., 17, 593, 10.1007/s00198-005-0019-4 Hemmatian, 2017 Hernandez, 2017, Understanding bone strength is not enough, J. Bone Miner. Res., 32, 1157, 10.1002/jbmr.3078 Hernandez, 2001, The influence of bone volume fraction and ash fraction on bone strength and modulus, Bone, 29, 74, 10.1016/S8756-3282(01)00467-7 Islam, 2016, Gamma radiation sterilization reduces the high-cycle fatigue life of allograft bone, Clin. Orthop. Relat. Res., 474, 827, 10.1007/s11999-015-4589-y Johnson, 1994, Stress fractures of the femoral shaft in athletes: more common than expected a new clinical test, Am. J. Sports Med., 22, 10.1177/036354659402200216 Kasiri, 2008, A critical distance study of stress concentrations in bone, J. Biomech., 41, 603, 10.1016/j.jbiomech.2007.10.003 Katsamenis, 2015, Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level, Bone, 76, 158, 10.1016/j.bone.2015.03.020 Lee, 2014, Effects of freeze–thaw and micro-computed tomography irradiation on structure–property relations of porcine trabecular bone, J. Biomech., 47, 1495, 10.1016/j.jbiomech.2014.02.022 Lenart, 2009, Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study, Osteoporos. Int., 20, 1353, 10.1007/s00198-008-0805-x Loundagin, 2018, Mechanical fatigue of bovine cortical bone using ground reaction force waveforms in running, J. Biomech. Eng., 140, 10.1115/1.4038288 McCladen, 1993, Age-related changes in the tensile properties of cortical bone, J Bone Jt Surg, 75, 1193, 10.2106/00004623-199308000-00009 McCreadie, 2004, Osteocyte lacuna size and shape in women with and without osteoporotic fracture, J. Biomech., 37, 563, 10.1016/S0021-9290(03)00287-2 Misof, 2016, Skeletal implications of chronic obstructive pulmonary disease, Curr Osteoporos Rep, 14, 49, 10.1007/s11914-016-0301-8 Nalla, 2003, Mechanistic fracture criteria for the failure of human cortical bone, Nature, 2, 164, 10.1038/nmat832 Nickolas, 2013, Rapid cortical bone loss in patients with chronic kidney disease, J. Bone Miner. Res., 28, 1811, 10.1002/jbmr.1916 Nicolella, 2006, Osteocyte lacunae tissue strain in cortical bone, J. Biomech., 39, 1735, 10.1016/j.jbiomech.2005.04.032 O’Brien, 2005, The effect of bone microstructure on the initiation and growth of microcracks, J. Orthop. Res., 23, 475, 10.1016/j.orthres.2004.08.005 Öhman, 2011, Compressive behaviour of child and adult cortical bone, Bone, 49, 769, 10.1016/j.bone.2011.06.035 Qiu, 2005, The morphological association between microcracks and osteocyte lacunae in human cortical bone, Bone, 37, 10, 10.1016/j.bone.2005.01.023 Qiu, 2010, Dependence of bone yield (volume of bone formed per unit of cement surface area) on resorption cavity size during osteonal remodeling in human rib: implications for osteoblast function and the pathogenesis of age-related bone loss, J. Bone Miner. Res., 25, 423, 10.1359/jbmr.091003 Reilly, 1975, The elastic and ultimate properties of compact bone tissue, J. Biomech., 8, 393, 10.1016/0021-9290(75)90075-5 Reilly, 2000, Observations of microdamage around osteocyte lacunae in bone, J. Biomech., 33, 1131, 10.1016/S0021-9290(00)00090-7 Ritchie, 2009, Plasticity and toughness in bone, Phys. Today, 62, 41, 10.1063/1.3156332 Roschger, 2008, Bone mineralization density distribution in health and disease, 42, 456 Schaffler, 1988, Stiffness of compact-bone — effects of porosity and density, J. Biomech., 21, 13, 10.1016/0021-9290(88)90186-8 Schindelin, 2012, Fiji - an open source platform for biological image analysis, Nat. Methods, 9, 676, 10.1038/nmeth.2019 Shane, 2010, Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research, J. Bone Miner. Res., 25, 2267, 10.1002/jbmr.253 Taylor, 1998, Fatigue of bone and bones: an analysis based on stressed volume, J. Orthop. Res., 16, 163, 10.1002/jor.1100160203 Taylor, 2008, The theory of critical distances, Eng. Fract. Mech., 75, 1696, 10.1016/j.engfracmech.2007.04.007 Taylor, 1999, Compression data on bovine bone confirms that a “stressed volume” principle explains the variability of fatigue strength results, J. Biomech., 32, 1199, 10.1016/S0021-9290(99)00112-8 Vashishth, 2000, Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age, Bone, 26, 375, 10.1016/S8756-3282(00)00236-2 Vashishth, 2001, Fatigue of cortical bone under combined axial-torsional loading, J. Orthop. Res., 19, 414, 10.1016/S0736-0266(00)00036-X Wachter, 2002, Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro, Bone, 31, 90, 10.1016/S8756-3282(02)00779-2 Yeni, 2000, Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth, J. Biomed. Mater. Res., 51, 504, 10.1002/1097-4636(20000905)51:3<504::AID-JBM27>3.0.CO;2-I Yeni, 1997, The influence of bone morphology on fracture toughness of the human femur and tibia, Bone, 21, 453, 10.1016/S8756-3282(97)00173-7 Yeni, 2001, Estimation of bone matrix apparent stiffness variation caused by osteocyte lacunar size and density, J. Biomech. Eng., 123, 10, 10.1115/1.1338123 Zioupos, 2001, Tensile fatigue in bone: are cycles-, or time to failure, or both, important?, J. Theor. Biol., 210, 389, 10.1006/jtbi.2001.2316 Zioupos, 2007, Fatigue strength of human cortical bone: age, physical, and material heterogeneity effects, J Biomed Mater Res - Part A, 86, 627, 10.1002/jbm.a.31576