Mối liên hệ giữa dị tật tim bẩm sinh và nồng độ mangan và sắt ở mẹ: một nghiên cứu trường hợp - đối chứng tại Trung Quốc

Springer Science and Business Media LLC - Tập 29 - Trang 26950-26959 - 2021
Meixian Wang1, Yan Tian2, Ping Yu1, Nana Li1, Ying Deng1, Lu Li1, Hong Kang1, Dapeng Chen3, Hui Wang4, Zhen Liu1,5, Juan Liang5
1Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
2Liupanshui Maternal and Child Health Care Hospital, Liupanshui Children’s Hospital, Liupanshui, China
3Chenghua District Maternal and Child Health Hospital of Chengdu, Chengdu, China
4Mianyang Maternal and Child Health Care Hospital, Mianyang, China
5National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China

Tóm tắt

Nghiên cứu này nhằm điều tra mối tương quan giữa nồng độ mangan và sắt ở mẹ và nguy cơ mắc dị tật tim bẩm sinh (DTTBS) ở trẻ sơ sinh. Một nghiên cứu trường hợp - đối chứng dựa trên bệnh viện đa trung tâm đã được thực hiện tại Trung Quốc. Tổng cộng có 322 trường hợp và 333 đối chứng đã được chọn từ các bà mẹ mang thai tham gia kiểm tra trước sinh. Mối tương quan giữa DTTBS và nồng độ mangan cùng sắt ở mẹ được ước lượng bằng hồi quy logistic có điều kiện. Hơn nữa, sự tương tác giữa mangan và sắt đối với DTTBS cũng đã được phân tích. So với nhóm đối chứng, những bà mẹ có nồng độ mangan trong tóc từ 3.01 μg/g trở lên có khả năng cao hơn về việc sinh con bị DTTBS so với những người có nồng độ thấp hơn. Tỷ lệ điều chỉnh của OR là 2.68 (95% CI = 1.44–4.99). Kết quả cho thấy những bà mẹ có hàm lượng sắt từ 52.95 μg/g trở lên có nguy cơ cao hơn đáng kể về việc sinh con bị DTTBS (aOR = 2.87, 95% CI = 1.54–5.37). Không có sự tương tác giữa nồng độ mangan và sắt ở mẹ được quan sát thấy trong mô hình nhân quả hoặc cộng gộp. Sự hiện diện đồng thời của nồng độ mangan và sắt cao có thể gia tăng nguy cơ DTTBS (OR = 7.02). Phụ nữ có nồng độ mangan quá mức có nguy cơ đáng kể trong việc sinh con bị DTTBS. Tình trạng sắt cao ở mẹ cũng tương quan với DTTBS. Sự hiện diện đồng thời của nồng độ mangan và sắt cao có thể làm tăng nguy cơ DTTBS.

Từ khóa

#mangan #sắt #dị tật tim bẩm sinh #nghiên cứu trường hợp - đối chứng #Trung Quốc

Tài liệu tham khảo

Altstatt LB, Pollack S, Feldman MH, Reba RC, Crosby WH (1967) Liver manganese in hemochromatosis. Proc Soc Exp Biol Med 124:353–355. https://doi.org/10.3181/00379727-124-31741 Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, Ahlbom A (2005) Calculating measures of biological interaction. Eur J Epidemiol 20:575–579. https://doi.org/10.1007/s10654-005-7835-x Baker DH, Halpin KM (1991) Manganese and iron interrelationship in the chick. Poult Sci 70:146–52. https://doi.org/10.3382/ps.0700146 Bass DA, Hickock D, Quig D, Urek K (2001) Trace element analysis in hair: Factors determining accuracy, precision, and reliability. Altern Med Rev 6:472–481 Bjørklund G, Aaseth J, Skalny AV, Suliburska J, Skalnaya MG, Nikonorov AA, Tinkov AA (2017) Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treat ment of iron deficiency. J Trace Elem Med Biol 41:41–53. https://doi.org/10.1016/j.jtemb.2017.02.005 Cao C, O'Brien KO (2013) Pregnancy and iron homeostasis: an update. Nutr Rev 71:35–51. https://doi.org/10.1111/j.1753-4887.2012.00550.x Carlsson H, Yhr M, Petersson S, Collins N, Polyak K, Enerbäck C (2005) Psoriasin (S100A7) and calgranulin-B (S100A9) induction is dependent on reactive oxygen species and is downregulated by Bcl-2 and antioxidants. Cancer Biol Ther 4:998–1005. https://doi.org/10.4161/cbt.4.9.1969 Cheung YF, Lam WW, Ip JJ, Cheuk DK, Cheng FW, Yang JY, Yau JP, Ho KK, Li CK, Li RC, Yuen HL, Ling AS, Li VW, Chan GC (2015) Myocardial iron load and fibrosis in long term survivors of childhood leukemia. Pediatr Blood Cancer 62:698–703. https://doi.org/10.1002/pbc.25369 Chua AC, Morgan EH (1996) Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biol Trace Elem Res 55:39–54. https://doi.org/10.1007/BF02784167 Connell DP, Winter SE, Conrad VB, Kim M, Crist KC (2006) The Steubenville Comprehensive Air Monitoring Program (SCAMP): concentrations and solubilities of PM(2.5) trace elements and their implications for source apportionment and health research. J Air Waste Manag Assoc 56:1750–1766. https://doi.org/10.1080/10473289.2006.10464580 Crossgrove J, Wei Z (2004) Manganese toxicity upon overexposure. NMR Biomed 17:544–553. https://doi.org/10.1002/nbm.931 Das SK, Patel VB, Basu R, Wang W, DesAulniers J, Kassiri Z, Oudit GY (2017) Females are protected from iron-overload cardiomyopathy independent of iron metabolism: key role of oxidative stress. J Am Heart Assoc 6. https://doi.org/10.1161/JAHA.116.003456 Davis MT, Bartfay WJ (2004) Dose-dependent effects of chronic iron burden on heart aldehyde and acyloin production in mice. Biol Trace Elem Res 99:255–268. https://doi.org/10.1385/BTER:99:1-3:255 Elenge MM, Aubry JC, Jacob L, De Brouwer C (2011) Heavy metal in hair samples of 109 non-industrial (miners) population in Katanga. Sante 21:41–46. https://doi.org/10.1684/san.2011.0229 Gambling L, Lang C, McArdle HJ (2011) Fetal regulation of iron transport during pregnancy. Am J Clin Nutr 94:1903s–1907s. https://doi.org/10.3945/ajcn.110.000885 Geddes GC, Earing MG (2018) Genetic evaluation of patients with congenital heart disease. Pediatr 30:707–713. https://doi.org/10.1097/MOP.0000000000000682 Gunter TE, Gerstner B, Lester T, Wojtovich AP, Malecki J, Swarts SG, Brookes PS, Gavin C, Gunter KK (2010) An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. 249:65–75. https://doi.org/10.1016/j.taap.2010.08.018 He SC, Niu Q (2004) Subclinical neurophysiological effects of manganese in welding workers. Int J Immunopathol Pharmacol 17:11–6. https://doi.org/10.1177/03946320040170S203 Helen D, Maria L, Group ESoCAEW (2011) Congenital Heart Defects in Europe: Prevalence and Perinatal Mortality, 2000 to 2005. Circulation 123 Hoet P, Vanmarcke E, Geens T, Deumer G, Haufroid V, Roels HA (2012) Manganese in plasma: a promising biomarker of exposure to Mn in welders. A pilot study. Toxicol Lett 213:69–74. https://doi.org/10.1016/j.toxlet.2011.06.013 Hu H, Liu Z, Li J, Li S, Zhu J (2015) Correlation between congenital heart defects and maternal copper and zinc concentrations. Birth Defects Res A Clin Mol Teratol 100. https://doi.org/10.1002/bdra.23284 Jiang Y, Zheng W (2005) Cardiovascular toxicities upon manganese exposure. Cardiovasc Toxicol 5:345. https://doi.org/10.1385/ct:5:4:345 Keen CL, Clegg MS, Hanna LA, Lanoue L, Rogers JM, Daston GP, Oteiza P, Uriu-Adams JY (2003) The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J Nutr 133 Khaliulin I, Schneider A, Houminer E, Borman JB, Schwalb H (2004) Apomorphine prevents myocardial ischemia/reperfusion-induced oxidative stress in the rat heart. 37:969–976. https://doi.org/10.1016/j.freeradbiomed.2004.06.029 Klevay LM, Christopherson DM, Shuler TR (2004) Hair as a biopsy material: trace element data on one man over two decades. Eur J Clin Nutr 58:1359–1364. https://doi.org/10.1038/sj.ejcn.1601975 Leonhard MJ, Chang ET, Loccisano AE, Garry MR (2019) A systematic literature review of epidemiologic studies of developmental manganese exposure and neuro developmental outcomes. Toxicology 420:46–65. https://doi.org/10.1016/j.tox.2019.03.004 Lewicka I, Kocyłowski R, Grzesiak M, Gaj Z, Sajnóg A, Barałkiewicz D, von Kaisenberg C, Suliburska J (2019) Relationship between pre-pregnancy body mass index and mineral concentrations in serum and amniotic fluid in pregnant women during labor. J Trace Elem Med Biol 52:136–142. https://doi.org/10.1016/j.jtemb.2018.12.007 Liu Y, Chen S, Zühlke L, Black G, Mun-Kit (2019) Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol 48:455–463. https://doi.org/10.1093/ije/dyz009 Lytzen R, Vejlstrup N, Bjerre J, Petersen OB, Leenskjold S, Dodd JK, Jorgensen FS, Sondergaard L (2019) Mortality and morbidity of major congenital heart disease related to general prenatal screening for malformations. Int J Cardiol 290:93–99. https://doi.org/10.1016/j.ijcard.2019.05.017 Magari SR, Schwartz J, Williams PL, Hauser R, Smith TJ, Christiani DC (2002) The association of particulate air metal concentrations with heart rate variability. Environ Health Perspect 110:875–880. https://doi.org/10.1289/ehp.02110875 Malik S, Cleves MA, Honein MA, Romitti PA, Botto LD, Yang S, Hobbs CA (2008) Maternal smoking and congenital heart defects. Pediatrics 63:e810–6. https://doi.org/10.1542/peds.2007-1519 McAlpine JM, McKeating DR, Vincze L, Vanderlelie JJ, Perkins AV (2019) Essential mineral intake during pregnancy and its association with maternal health and birth outcomes in South East Queensland, Australia. Nutr Metab Insights 12:1178638819879444. https://doi.org/10.1177/1178638819879444 McArdle HJ, Morgan EH (1982) Transferrin and iron movements in the rat conceptus during gestation. J Reprod Fertil 66:529–536. https://doi.org/10.1530/jrf.0.0660529 Mezzaroba L, Alfieri DF, Colado Simão AN, EM VR (2019): The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 74:230–241. https://doi.org/10.1016/j.neuro.2019.07.007 Miyoung Y, Nong A, Clewell HJ, Taylor M, Dorman DC, Andersen ME (2009) Evaluating placental transfer and tissue concentrations of manganese in the pregnant rat and fetuses after inhalation exposures with a PBPK model. Toxicol Sci 112:44–58. https://doi.org/10.1093/toxsci/kfp198 Mora AM, van Wendel de Joode B, Mergler D, Córdoba L, Cano C, Quesada R, Smith DR, Menezes-Filho JA, Eskenazi B (2015) Maternal blood and hair manganese concentrations, fetal growth, and length of gestation in the ISA co hort in Costa Rica. Environ Res 136:47–56. https://doi.org/10.1016/j.envres.2014.10.011 Moreau JLM, Kesteven S, Martin E, Lau KS, Yam MX, O'Reilly VC, Del Monte-Nieto G, Baldini A, Feneley MP, Moon AM, Harvey RP, Sparrow DB, Chapman G, Dunwoodie SL (2019) Gene-environment interaction impacts on heart development and embryo survival. Development 146. https://doi.org/10.1242/dev.172957 Nandakumaran M, Al-Sannan B, Al-Sarraf H, Al-Shammari M (2016) Maternal-fetal transport kinetics of manganese in perfused human placental lobule in vitro. J Matern Fetal Neonatal Med 29:274–278. https://doi.org/10.3109/14767058.2014.998193 Rodriguez A, Hilvo M, Kytömäki L, Fleming RE, Britton RS, Bacon BR, Parkkila S (2007) Effects of iron loading on muscle: genome-wide mRNA expression profiling in the mouse. BMC Genomics 8:379. https://doi.org/10.1186/1471-2164-8-379 Shao JJ, Yao HD, Zhang ZW, Li S, Xu SW (2012) The disruption of mitochondrial metabolism and ion homeostasis in chicken hearts exposed to manganese. Toxicol Lett 214:99–108. https://doi.org/10.1016/j.toxlet.2012.08.011 Sun L, Yu Y, Huang T, An P, Yu D, Yu Z, Li H, Sheng H, Cai L, Xue J (2012) Associations between ionomic profile and metabolic abnormalities in human population. PLoS One 7:e38845. https://doi.org/10.1371/journal.pone.0038845 Sunagawa T, Shimizu T, Matsumoto A, Tagashira M, Kanda T, Shirasawa T, Nakaya H (2014) Cardiac electrophysiological alterations in heart/muscle-specific manganese-superoxide dismutase-deficient mice: prevention by a dietary antioxidant polyphenol. Biomed Res Int 2014:704291. https://doi.org/10.1155/2014/704291 Tupwongse V, Parkpian P, Watcharasit P, Satayavivad J (2007) Determination of levels of Mn, As, and other metals in water, sediment, and biota from Phayao Lake, Northern Thailand, and assessment of dietary exposure. Environ Lett 42:1029–1041 van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58:2241-7. https://doi.org/10.1016/j.jacc.2011.08.025 Ward RJ, Wilmet S, Legssyer R, Leroy D, Toussaint L, Crichton RR, Pierreux C, Hue L, Piette J, Srai SK, Solanky N, Klein D, Summer K (2009) Effects of marginal iron overload on iron homeostasis and immune function in alveolar macrophages isolated from pregnant and normal rats. Biometals 22:211–223. https://doi.org/10.1007/s10534-008-9155-6 Wei Z, Zhao Q, Slavkovich V, Aschner M, Graziano JH (1999) Alteration of iron homeostasis following chronic exposure to manganese in rats. Brain Res 833:125–32 Wong CT, Morgan EH (1973) Placental transfer of iron in the guinea pig. Q J Exp Physiol Cogn Med Sci 58:47–58. https://doi.org/10.1113/expphysiol.1973.sp002190 Xie D,Wang H, Liu Z, Fang J, Yang T, Zhou S, Wang A,Qin J, Xiong L (2017) Perinatal outcomes and congenital heart defect prognosis in 53313 non-selected perinatal infants. PloS one 12(6):e0177229. Yang H, Sun Y, Zheng X (2010) Manganese-induced apoptosis in rat myocytes. J Biochem Mol Toxicol 21:94–100. https://doi.org/10.1002/jbt.20172 Yang J, Kang Y, Cheng Y, Zeng L, Dang S (2019) Iron intake and iron status during pregnancy and risk of congenital heart defects: a case-control study. 301 Yang J, Kang Y, Cheng Y, Zeng L, Shen Y, Shi G, Liu Y, Qu P, Zhang R, Yan H, Dang S (2020) Iron intake and iron status during pregnancy and risk of congenital heart defects: a case-control study. Int J Cardiol 301:74–79. https://doi.org/10.1016/j.ijcard.2019.11.115 Zou GY (2008) On the estimation of additive interaction by use of the four-by-two table and beyond. Am J Epidemiol 168:212–224. https://doi.org/10.1093/aje/kwn104