Association between RAD51, XRCC2 and XRCC3 gene polymorphisms and risk of ovarian cancer: a case control and an in silico study

Springer Science and Business Media LLC - Tập 48 Số 5 - Trang 4209-4220 - 2021
Gunjan Kumar1, Solomon F.D. Paul1, Jovita Martin2, M Manickavasagam2, Shirley Sundersingh3, Nalini Ganesan4, Ramya Ramadoss5, G Usha Rani6, F. Andrea Mary1
1Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600116, Tamilnadu, India
2Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research (DU), Tamilnadu, India
3Department of Oncopathology, Cancer Institute (WIA), Chennai, Tamilnadu, India
4Department of Biochemistry, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamilnadu, India
5Department of General Surgery, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamilnadu, India
6Department of Obstetrics and Gynecology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamilnadu, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Li J, Sun H, Huang Y et al (2019) Pathways and assays for DNA double-strand break repair by homologous recombination. Acta Biochim Biophys Sin (Shanghai) 51:879–889. https://doi.org/10.1093/abbs/gmz076

Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254. https://doi.org/10.1038/85798

Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649. https://doi.org/10.1038/25292

Hustedt N, Durocher D (2017) The control of DNA repair by the cell cycle. Nat Cell Biol 19:1–9. https://doi.org/10.1038/ncb3452

Cerbinskaite A, Mukhopadhyay A, Plummer ER et al (2012) Defective homologous recombination in human cancers. Cancer Treat Rev 38:89–100. https://doi.org/10.1016/j.ctrv.2011.04.015

West SC, Blanco MG, Chan YW et al (2016) Resolution of recombination intermediates: mechanisms and regulation. Cold Spring Harb Symp Quant Biol 80:103–109. https://doi.org/10.1101/sqb.2015.80.027649

Suwaki N, Klare K, Tarsounas M (2011) RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin Cell Dev Biol 22:898–905. https://doi.org/10.1016/j.semcdb.2011.07.019

Mao CF, Qian WY, Wu JZ et al (2014) Association between the XRCC3 Thr241Met polymorphism and breast cancer risk: an updated meta-analysis of 36 casecontrol studies. Asian Pac J Cancer Prev 15:6613–6618. https://doi.org/10.7314/APJCP.2014.15.16.6613

Kadouri L, Kote-Jarai Z, Hubert A et al (2004) A single-nucleotide polymorphism in the RAD51 gene modifies breast cancer risk in BRCA2 carriers, but not in BRCA1 carriers or noncarriers. Br J Cancer 90:2002–2005. https://doi.org/10.1038/sj.bjc.6601837

Griffin CS, Simpson PJ, Wilson CR, Thacker J (2000) Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol 2:757–761. https://doi.org/10.1038/35036399

Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135. https://doi.org/10.1016/j.canlet.2004.08.018

Takata M, Sasaki MS, Tachiiri S et al (2001) Chromosome Instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21:2858–2866. https://doi.org/10.1128/mcb.21.8.2858-2866.2001

Clarkson SG, Wood RD (2005) Polymorphisms in the human XPD (ERCC2) gene, DNA repair capacity and cancer susceptibility: an appraisal. DNA Repair (Amst) 4:1068–1074. https://doi.org/10.1016/j.dnarep.2005.07.001

Deans B, Griffin CS, Maconochie M, Thacker J (2000) Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO J 19:6675–6685. https://doi.org/10.1093/emboj/19.24.6675

Zhang Y, Wang H, Peng Y et al (2014) The Arg188His polymorphism in the XRCC2 gene and the risk of cancer. Tumor Biol 35:3541–3549. https://doi.org/10.1007/s13277-013-1468-6

Ramadan RA, Desouky LM, Elnaggar MA et al (2014) Association of DNA repair genes XRCC1 (Arg399Gln), (Arg194Trp) and XRCC3 (Thr241Met) polymorphisms with the risk of breast cancer: a case-control study in Egypt. Genet Test Mol Biomark 18:754–760. https://doi.org/10.1089/gtmb.2014.0191

Nissar S, Baba SM, Akhtar T et al (2014) RAD51 G135C gene polymorphism and risk of colorectal cancer in Kashmir. Eur J Cancer Prev 23:264–268. https://doi.org/10.1097/CEJ.0000000000000049

Sobhan MR, Yazdi MF, Mazaheri M et al (2017) Association between the DNA repair gene XRCC3 rs861539 polymorphism and risk of osteosarcoma: a systematic review and meta-analysis. Asian Pac J Cancer Prev 18:549–555. https://doi.org/10.22034/APJCP.2017.18.2.549

Braybrooke JP, Spink KG, Thacker J, Hickson ID (2000) The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2. J Biol Chem 275:29100–29106. https://doi.org/10.1074/jbc.M002075200

Jiao L, Hassan MM, Bondy ML et al (2008) XRCC2 and XRCC3 gene polymorphismand risk of pancreatic cancer. Am J Gastroenterol 103:360–367. https://doi.org/10.1111/j.1572-0241.2007.01615.x

Auranen A, Song H, Waterfall C et al (2005) Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer 117:611–618. https://doi.org/10.1002/ijc.21047

Beesley J, Jordan SJ, Spurdle AB et al (2007) Association between single-nucleotide polymorphisms in hormone metabolism and DNA repair genes and epithelial ovarian cancer: results from two Australian studies and an additional validation set. Cancer Epidemiol Biomark Prev 16:2557–2565. https://doi.org/10.1158/1055-9965.EPI-07-0542

Yen CY, Liu SY, Chen CH et al (2008) Combinational polymorphisms of four DNA repair genes XRCC1, XRCC2, XRCC3, and XRCC4 and their association with oral cancer in Taiwan. J Oral Pathol Med 37:271–277. https://doi.org/10.1111/j.1600-0714.2007.00608.x

Sliwinski T, Krupa R, Majsterek I et al (2005) Polymorphisms of the BRCA2 and RAD51 genes in breast cancer. Breast Cancer Res Treat 94:105–109. https://doi.org/10.1007/s10549-005-0672-5

Blasiak J, Przybyłowska K, Czechowska A et al (2003) Analysis of the G/C polymorphism in the 5′-untranslated region of the RAD51 gene in breast cancer. Acta Biochim Pol 50:249–253. https://doi.org/10.18388/abp.2003_3733

Krupa R, Synowiec E, Pawlowska E et al (2009) Polymorphism of the homologous recombination repair genes RAD51 and XRCC3 in breast cancer. Exp Mol Pathol 87:32–35. https://doi.org/10.1016/j.yexmp.2009.04.005

Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427

Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. https://doi.org/10.1038/nprot.2015.053

Sim NL, Kumar P, Hu J et al (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452–W457. https://doi.org/10.1093/nar/gks539

Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter. https://doi.org/10.1002/0471142905.hg0720s76

Choi Y, Sims GE, Murphy S et al (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7:e46688. https://doi.org/10.1371/journal.pone.0046688

Hecht M, Bromberg Y, Rost B (2015) Better prediction of functional effects for sequence variants. BMC Genom. https://doi.org/10.1186/1471-2164-16-S8-S1

Tang H, Thomas PD (2016) PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics 32:2230–2232. https://doi.org/10.1093/bioinformatics/btw222

Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118–e118. https://doi.org/10.1093/nar/gkr407

Shihab HA, Gough J, Mort M et al (2014) Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. Hum Genom 8:11. https://doi.org/10.1186/1479-7364-8-11

Pejaver V, Urresti J, Lugo-Martinez J et al (2020) Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat Commun 11:1–13. https://doi.org/10.1038/s41467-020-19669-x

Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22:2729–2734. https://doi.org/10.1093/bioinformatics/btl423

Capriotti E, Calabrese R, Fariselli P et al (2013) WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genom 14(Suppl 3):S6. https://doi.org/10.1186/1471-2164-14-s3-s6

Niroula A, Urolagin S, Vihinen M (2015) PON-P2: prediction method for fast and reliable identification of harmful variants. PLoS ONE. https://doi.org/10.1371/journal.pone.0117380

Capriotti E, Altman RB, Bromberg Y (2013) Collective judgment predicts disease-associated single nucleotide variants. BMC Genom 14(Suppl 3):S2. https://doi.org/10.1186/1471-2164-14-s3-s2

Capriotti E, Altman RB (2011) A new disease-specific machine learning approach for the prediction of cancer-causing missense variants. Genomics 98:310–317. https://doi.org/10.1016/j.ygeno.2011.06.010

Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. https://doi.org/10.1093/nar/gki375

Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Struct Funct Genet 62:1125–1132. https://doi.org/10.1002/prot.20810

Ashkenazy H, Abadi S, Martz E et al (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344–W350. https://doi.org/10.1093/nar/gkw408

Geourjon C, Deléage G (1995) Sopma: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11:681–684. https://doi.org/10.1093/bioinformatics/11.6.681

Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131

Schrödinger LLC (2015) The PyMOL molecular graphics system, version~1.8

Han J, Haiman C, Niu T et al (2009) Genetic variation in DNA repair pathway genes and premenopausal breast cancer risk. Breast Cancer Res Treat 115:613–622. https://doi.org/10.1007/s10549-008-0089-z

Michalska MM, Samulak D, Romanowicz H et al (2016) Association between single nucleotide polymorphisms (SNPs) of XRCC2 and XRCC3 homologous recombination repair genes and ovarian cancer in Polish women. Exp Mol Pathol 100:243–247. https://doi.org/10.1016/j.yexmp.2016.01.007

Sliwinski T, Walczak A, Przybylowska K et al (2010) Polymorphisms of the XRCC3 C722T and the RAD51 G135C genes and the risk of head and neck cancer in a Polish population. Exp Mol Pathol 89:358–366. https://doi.org/10.1016/j.yexmp.2010.08.005

Krejci L, Altmannova V, Spirek M, Zhao X (2012) Homologous recombination and its regulation. Nucleic Acids Res 40:5795–5818. https://doi.org/10.1093/nar/gks270

San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257. https://doi.org/10.1146/annurev.biochem.77.061306.125255

Walsh CS (2015) Two decades beyond BRCA1/2: homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy? Gynecol Oncol 137:343–350. https://doi.org/10.1016/j.ygyno.2015.02.017

Lin WY, Camp NJ, Cannon-Albright LA et al (2011) A role for XRCC2 gene polymorphisms in breast cancer risk and survival. J Med Genet 48:477–484. https://doi.org/10.1136/jmedgenet-2011-100018

Romanowicz-Makowska H, Smolarz B, Polać I, Sporny S (2012) Single nucleotide polymorphisms of RAD51 G135C, XRCC2 Arg188His and XRCC3 Thr241Met homologous recombination repair genes and the risk of sporadic endometrial cancer in Polish womenjog. J Obstet Gynaecol Res 38:918–924. https://doi.org/10.1111/j.1447-0756.2011.01811.x

Zdzienicka MZ (1999) Mammalian X-ray-sensitive mutants which are defective in non-homologous (illegitimate) DNA double-strand break repair. Biochimie 81:107–116. https://doi.org/10.1016/S0300-9084(99)80043-1

He Y, Zhang Y, Jin C et al (2014) Impact of XRCC2 Arg188His polymorphism on cancer susceptibility: a meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0091202

Yuan C, Liu X, Yan S et al (2014) Analyzing association of the XRCC3 gene polymorphism with ovarian cancer risk. Biomed Res Int 2014:25–29. https://doi.org/10.1155/2014/648137

Hu X, Sun S (2015) RAD51 gene 135G/C polymorphism and ovarian cancer risk: a meta-analysis. Int J Clin Exp Med 8:22365–22370

Wang W, Li JL, He XF et al (2013) Association between the RAD51 135 G>C polymorphism and risk of cancer: a meta-analysis of 19,068 cases and 22,630 controls. PLoS ONE 8:1–9. https://doi.org/10.1371/journal.pone.0075153

Zhang B, bei, Wang D gang, Xuan C, et al (2014) Genetic 135G/C polymorphism of RAD51 gene and risk of cancer: a meta-analysis of 28,956 cases and 28,372 controls. Fam Cancer 13:515–526. https://doi.org/10.1007/s10689-014-9729-0

Van Der Velden AW, Thomas AAM (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31:87–106. https://doi.org/10.1016/S1357-2725(98)00134-4

Gray NK (1998) Translational control by repressor proteins binding to the 5′UTR of mRNAs. Methods Mol Biol 77:379–397. https://doi.org/10.1385/0-89603-397-x:379

Wang WW, Ebbers SM, Kaufman DJ et al (2001) A single nucleotide polymorphism in the 5′ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomark Prev 10:955–960

Kayani MA, Khan S, Baig RM, Mahjabeen I (2014) Association of RAD 51 135 G/C, 172 G/T and XRCC3 Thr241Met gene polymorphisms with increased risk of head and neck cancer. Asian Pac J Cancer Prev 15:10457–10462. https://doi.org/10.7314/APJCP.2014.15.23.10457

Zhou GW, Hu J, Peng XD, Li Q (2011) RAD51 135G>C polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 125:529–535. https://doi.org/10.1007/s10549-010-1031-8

Michalska MM, Samulak D, Romanowicz H, Smolarz B (2015) Single nucleotide polymorphisms (SNPs) of RAD51-G172T and XRCC2-41657C/T homologous recombination repair genes and the risk of triple- negative breast cancer in Polish women. Pathol Oncol Res 21:935–940. https://doi.org/10.1007/s12253-015-9922-y

Yan Y, Liang H, Li R et al (2014) XRCC3 Thr241Met polymorphism and ovarian cancer risk: a meta-analysis. Tumor Biol 35:2711–2715. https://doi.org/10.1007/s13277-013-1357-z