Assignment flows for data labeling on graphs: convergence and stability
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amari, S.I., Nagaoka, H.: Methods of Information Geometry. Oxford Univ. Press, Oxford (2000)
Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imag. Vision 58(2), 211–238 (2017)
Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry, Ergebnisse Der Mathematik Und Ihrer Grenzgebiete 34, vol. 64. Springer, Cham (2017)
Belitskii, G., Rayskin, V.: On the Grobman–Hartman theorem in $$\alpha $$-Hölder class for Banach spaces. preprint (2009)
Bergmann, R., Fitschen, J.H., Persch, J., Steidl, G.: Iterative multiplicative filters for data labeling. Int. J. Comput. Vision 123(3), 435–453 (2017)
Bomze, I.M.: Regularity versus degeneracy in dynamics, games, and optimization: a unified approach to different aspects. SIAM Rev. 44(3), 394–414 (2002)
Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)
Cordts, M., Omran, M., Ramos, S., Refeld, T., Enzweiler, M., Beneson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proc. CVPR (2016)
Elad, M.: Deep, deep trouble: deep learning’s impact on image processing, mathematics, and humanity. SIAM News 50(4) (2017)
Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)
Finlayson, S., Bowers, J., Ito, J., Zittrain, J., Beam, A., Kohane, I.: Adversarial attacks on medical machine learning: emerging vulnerabilities demand new conversations. Science 363(6433), 1287–1289 (2019)
Galla, T., Farmer, J.: Complex dynamics in learning complicated games. PNAS 110(4), 1232–1236 (2013)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, New York (2016)
Hühnerbein, R., Savarino, F., Petra, S., Schnörr, C.: Learning adaptive regularization for image labeling using geometric assignment. J. Math. Imaging Vis. 63, 186–215 (2021)
Kappes, J., Andres, B., Hamprecht, F., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., Rother, C.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184 (2015)
Kelley, A.: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. (1966)
Losert, V., Akin, E.: Dynamics of games and genes: discrete versus continuous time. J. Math. Biol. 17(2), 241–251 (1983)
Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern. Anal. Mach. Intell. 26(11), 1452–1458 (2004)
Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press, Chicago (2010)
Savarino, F., Schnörr, C.: Continuous-domain assignment flows. Eur. J. Appl. Math. 32(3), 570–597 (2021)
Schaeffer, D.G., Cain, J.W.: Ordinary Differential Equations: Basics and Beyond. Springer, Berlin (2016)
Schecter, S., Gintis, H.: Game Theory in Action: An Introduction to Classical and Evolutionary Models. Princeton University Press, Princeton (2016)
Schnörr, C.: Assignment Flows. In: Grohs, P., Holler, M., Weinmann, A. (eds.) Variational Methods for Nonlinear Geometric Data and Applications, pp. 235–260. Springer, Berlin (2020)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern. Anal. Mach. Intell. 22, 888–905 (2000)
Sitenko, D., Boll, B., Schnörr, C.: Assignment flow for order-constrained OCT segmentation. Int. J. Comput. Vis. 129, 3088–3118 (2021).
Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Grad. Studies Math, vol. 140. Amer. Math. Soc, London (2012)
Zeilmann, A., Petra, S., Schnörr, C.: Learning Linear Assignment Flows for Image Labeling via Exponential Integration. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds.) Scale Space and Variational Methods in Computer Vision (SSVM), LNCS, vol. 12679, pp. 385–397 (2021)
Zeilmann, A., Petra, S., Schnörr, C.: Learning Linearized Assignment Flows for Image Labeling. arXiv:2108.02571 (2021)
Zeilmann, A., Savarino, F., Petra, S., Schnörr, C.: Geometric numerical integration of the assignment flow. Inverse Prob. 36, 034004 (33pp) (2020)
Zern, A., Zisler, M., Petra, S., Schnörr, C.: Unsupervised assignment flow: label learning on feature manifolds by spatially regularized geometric assignment. J. Math. Image. Vis. 62(6–7), 982–1006 (2020)