Assessment of zeolite 13X and Lewatit® VP OC 1065 for application in a continuous temperature swing adsorption process for biogas upgrading
Tóm tắt
Từ khóa
Tài liệu tham khảo
Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N (2017) A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valoriz 8(2):267–283. https://doi.org/10.1007/s12649-016-9826-4
Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5):1633–1645. https://doi.org/10.1016/j.biombioe.2011.02.033
Mayer T (2012) Über die Aufbereitung biogener Gase mittels adsorption. Dissertation, TU Wien
IEA-Bioenergy (2016) IEA Bioenergy Task 37 country reports summary 2015. doi: 978–1–910154-11-3
Makaruk A, Miltner M, Harasek M (2010) Membrane biogas upgrading processes for the production of natural gas substitute. Sep Purif Technol 74(1):83–92. https://doi.org/10.1016/j.seppur.2010.05.010
Santos MPS, Grande CA, Rodrigues AE (2011) Pressure swing adsorption for biogas upgrading, effect of recycling streams in pressure swing adsorption design. Ind Eng Chem Res 50(2):974–985. https://doi.org/10.1021/ie100757u
TU Wien (2012) Biogas to biomethane technology review. IEE project BioMethane Regions, Deliverable. Reference: Task 3.1.1
Petersson A, Wellinger A (2009) Biogas upgrading technologies—developments and innovations. IEA bioenergy, task 37—energy from biogas landfill gas
Svensson H, Edfeldt J, Zejnullahu Velasco V, Hulteberg C, Karlsson HT (2014) Solubility of carbon dioxide in mixtures of 2-amino-2-methyl-1-propanol and organic solvents. Int J Greenh Gas Control 27:247–254. https://doi.org/10.1016/j.ijggc.2014.06.004
Svensson H, Zejnullahu Velasco V, Hulteberg C, Karlsson HT (2014) Heat of absorption of carbon dioxide in mixtures of 2-amino-2-methyl-1-propanol and organic solvents. Int J Greenh Gas Control 30:1–8. https://doi.org/10.1016/j.ijggc.2014.08.022
Zhang W, Liu H, Sun C, Drage TC, Snape CE (2014) Performance of polyethyleneimine-silica adsorbent for post-combustion CO2 capture in a bubbling fluidized bed. Chem Eng J 251:293–303. https://doi.org/10.1016/j.cej.2014.04.063
Yu Q, Delgado JDLP, Veneman R, Brilman DWF (2017) Stability of a benzyl amine based CO2 capture adsorbent in view of regeneration strategies. Ind Eng Chem Res 56(12):3259–3269. https://doi.org/10.1021/acs.iecr.6b04645
Drage TC, Arenillas A, Smith KM, Snape CE (2008) Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater 116(1-3):504–512. https://doi.org/10.1016/j.micromeso.2008.05.009
Pröll T, Schöny G, Sprachmann G, Hofbauer H (2016) Introduction and evaluation of a double loop staged fluidized bed system for post-combustion CO2 capture using solid sorbents in a continuous temperature swing adsorption process. Chem Eng Sci 141:166–174. https://doi.org/10.1016/j.ces.2015.11.005
Schöny G, Zehetner E, Fuchs J, Pröll T, Sprachmann G, Hofbauer H (2016) Design of a bench scale unit for continuous CO2 capture via temperature swing adsorption—fluid-dynamic feasibility study. Chem Eng Res Des 106:155–167. https://doi.org/10.1016/j.cherd.2015.12.018
Schöny G, Dietrich F, Fuchs J, Pröll T, Hofbauer H (2017) A multi-stage fluidized bed system for continuous CO2 capture by means of temperature swing adsorption – first results from bench scale experiments. Powder Technol 316:519–527. https://doi.org/10.1016/j.powtec.2016.11.066
Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854. https://doi.org/10.1002/cssc.200900036
Vivio-Vilches JF, Pérez-Cadenas AF, Maldonado-Hódar FJ et al (2017) Biogas upgrading by selective adsorption onto CO2 activated carbon from wood pellets. Journal of Environmental Chemical Engineering 5(2):1386–1393. https://doi.org/10.1016/j.jece.2017.02.015
Cavenati S, Grande CA, Rodrigues AE (2008) Metal organic framework adsorbent for biogas upgrading. Ind Eng Chem Res 47(16):6333–6335. https://doi.org/10.1021/ie8005269
Cavenati S, Grande CA, Rodrigues AE (2004) Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data 49(4):1095–1101. https://doi.org/10.1021/je0498917
Lee J-S, Kim J-H, Kim J-T, Suh JK, Lee JM, Lee CH (2002) Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J Chem Eng Data 47(5):1237–1242. https://doi.org/10.1021/je020050e
Li Y, Yi H, Tang X, Li F, Yuan Q (2013) Adsorption separation of CO2/CH4 gas mixture on the commercial zeolites at atmospheric pressure. Chem Eng J 229:50–56. https://doi.org/10.1016/j.cej.2013.05.101
Montanari T, Finocchio E, Salvatore E, Garuti G, Giordano A, Pistarino C, Busca G (2011) CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents. Energy 36(1):314–319. https://doi.org/10.1016/j.energy.2010.10.038
Na B-K, Koo K-K, Eum H-M, Lee H, Song HK (2001) CO2 recovery from flue gas by PSA process using activated carbon. Korean J Chem Eng 18(2):220–227. https://doi.org/10.1007/BF02698463
Siriwardane RV, Shen M-S, Fisher EP, Poston JA (2001) Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuel 15(2):279–284. https://doi.org/10.1021/ef000241s
Do D, Wang K (1998) A new model for the description of adsorption kinetics in heterogeneous activated carbon. Carbon N Y 36(10):1539–1554. https://doi.org/10.1016/S0008-6223(98)00145-6
Walton KS, Abney MB, LeVan MD (2006) CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater 91(1-3):78–84. https://doi.org/10.1016/j.micromeso.2005.11.02
International Zeolite Association (2016) IZA Structure Commission. http://www.iza-structure.org/databases/DatabaseHistory.htm. Accessed 10 Mar 2017
Veneman R, Li ZS, Hogendoorn J a et al (2012) Continuous CO2 capture in a circulating fluidized bed using supported amine sorbents. Chem Eng J 207–208:18–26. https://doi.org/10.1016/j.cej.2012.06.100
Alesi WR, Kitchin JR (2012) Evaluation of a primary amine-functionalized ion-exchange resin for CO2 capture. Ind Eng Chem Res 51(19):6907–6915. https://doi.org/10.1021/ie300452c
Gray ML, Hoffman JS, Hreha DC, Fauth DJ, Hedges SW, Champagne KJ, Pennline HW (2009) Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy Fuel 23(10):4840–4844. https://doi.org/10.1021/ef9001204
Heydari-Gorji A, Sayari A (2012) Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents. Ind Eng Chem Res 51(19):6887–6894. https://doi.org/10.1021/ie3003446
Tirio AP, Wagner R (2015) Process and apparatus for carbon dioxide and carbonyl sulfide capture via ion exchange resins. US Patent 9028590 B2
Veneman R, Hilbers T, Brilman DWF, Kersten SRA (2016) CO2 capture in a continuous gas-solid trickle flow reactor. Chem Eng J 289:191–202. https://doi.org/10.1016/j.cej.2015.12.066
Veneman R, Frigka N, Zhao W, Li Z, Kersten S, Brilman W (2015) Adsorption of H2O and CO2 on supported amine sorbents. Int J Greenh Gas Control 41:268–275. https://doi.org/10.1016/j.ijggc.2015.07.014
Sutanto S, Dijkstra JW, Pieterse JAZ, Boon J, Hauwert P, Brilman DWF (2017) CO2 removal from biogas with supported amine sorbents: first technical evaluation based on experimental data. Sep Purif Technol 184:12–25. https://doi.org/10.1016/j.seppur.2017.04.030
Do DD (1998) Adsorption analysis: equilibria and kinetics, series on. Imperial College Press, London
Wang Y, LeVan MD (2009) Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: pure components. J Chem Eng Data 54(10):2839–2844. https://doi.org/10.1021/je800900a
Belmabkhout Y, De Weireld G, Sayari A (2009) Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 25(23):13275–13278. https://doi.org/10.1021/la903238y
Mulgundmath VP, Tezel FH, Saatcioglu T, Golden TC (2011) Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite. Can J Chem Eng 90(3):730–738. https://doi.org/10.1002/cjce.20592
Hallenbeck AP, Kitchin JR (2013) Effects of O2 and SO2 on the capture capacity of a primary-amine based polymeric CO2 sorbent. Ind Eng Chem Res 52(31):10788–10794. https://doi.org/10.1021/ie400582a
Chue KT, Kim JN, Yoo J et al (1995) Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind Eng Chem Res 34(2):591–598. https://doi.org/10.1021/ie00041a020
Patterson T, Esteves S, Dinsdale R, Guwy A (2011) An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 39(3):1806–1816. https://doi.org/10.1016/j.enpol.2011.01.017
Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sust Energ Rev 51:521–532. https://doi.org/10.1016/j.rser.2015.06.029
Wang Y, LeVan MD (2010) Adsorption equilibrium of binary mixtures of carbon dioxide and water vapor on zeolites 5A and 13X. J Chem Eng Data 55(9):3189–3195. https://doi.org/10.1021/je100053g
Vogtenhuber H, Hofmann R, Schöny G et al (2017) Development of an efficient heat balance concept for a TSA-process considering heat-pump integration. Proceedings of the 10th international conference on sustainable energy and environmental protection, University of Maribor 1-12. ISBN: 978-961-286-061