Assessment of vascular function in individuals with hyperglycemia: a cross-sectional study of glucose – induced changes in digital volume pulse

Journal of Diabetes & Metabolic Disorders - Tập 14 - Trang 1-8 - 2015
Fariba Alaei-Shahmiri1,2, Yun Zhao1, Jill Sherriff1
1School of Public Health, Curtin University, Perth, Western Australia
2Iran University of Medical Sciences (IUMS), Tehran, Iran

Tóm tắt

Arterial stiffness is an independent risk factor for cardiovascular disease and its progression may be accelerated in the presence of hyperglycemia, either fasting or postprandial. The current study assessed vascular function in subjects with pre-diabetes hyperglycemia, using digital volume pulse analysis technique. We conducted a cross-sectional study examining vascular function in the fasting and postprandial (glucose-induced) state in 44 adults, consisting of 17 subjects with pre-diabetic hyperglycemia and 27 normoglycemic volunteers. Photoplethysmography of the digital volume pulse (DVP) was used to determine stiffness index (SI) and reflective index (RI), as main measures of larger artery stiffness and vascular tone, respectively. Our results showed a significantly higher (Ln) fasting SI in the hyperglycemic group compared with the control group (2.19 ± 0.32 vs. 1.96 ± 0.22, P = 0.005). However, this pattern reversed after adjustment for potential confounders. In multiple linear regression analysis, (Ln) SI was related to age (β = 0.01, 95% CI: 0.01-0.02, P < 0.001) and systolic blood pressure (SBP) (β = 0.01, 95% CI: 0.00-0.01, P < 0.05), but not with W/H, diastolic blood pressure (DBP), fasting plasma glucose (FPG) or serum lipids. Furthermore, age (β = 0.02, 95% CI: 0.01-0.03, P < 0.001) and mean arterial pressure (MAP) (β = 0.01, 95% CI: 0.00-0.02, P < 0.05) were found as the strong predictors of fasting SI in hyperglycemic group. Neither FPG nor 2-h plasma glucose was a significant predictor for SI in hyperglycemic group, after accounting for age and MAP. Subjects with hyperglycemia had a 15% blunted change in postprandial AUCs for RI, adjusted for the respective baseline measurements (−9.40 ± 3.59 vs. -11.00 ± 2.84%) but these did not attain statistical significance. Increased arterial stiffness in pre-diabetic subjects is strongly associated with age and MAP. The increased DVP-derived SI reported in patients with pre-diabetic hyperglycemia may result from different frequently accompanied risk factors not just glycemic changes in this range.

Tài liệu tham khảo

Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43. Benetos A, Waeber B, Izzo J, Mitchell G, Resnick L, Asmar R, et al. Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: clinical applications. Am J Hypertens. 2002;15(12):1101–8. Schram MT, Henry RM, van Dijk RA, Kostense PJ, Dekker JM, Nijpels G, et al. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension. 2004;43(2):176–81. Henry RM, Kostense PJ, Spijkerman AM, Dekker JM, Nijpels G, Heine RJ, et al. Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn Study. Circulation. 2003;107(16):2089–95. Potenza MA, Gagliardi S, Nacci C, Carratu MR, Montagnani M. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem. 2009;16(1):94–112. Haller H. Postprandial glucose and vascular disease. Diabet Med. 1997;14 Suppl 3:S50–6. Watanabe K, Suzuki T, Ouchi M, Suzuki K, Ohara M, Hashimoto M, et al. Relationship between postprandial glucose level and carotid artery stiffness in patients without diabetes or cardiovascular disease. BMC Cardiovasc Disord. 2013;13:11. Chowienczyk PJ, Kelly RP, MacCallum H, Millasseau SC, Andersson TL, Gosling RG, et al. Photoplethysmographic assessment of pulse wave reflection: blunted response to endothelium-dependent beta2-adrenergic vasodilation in type II diabetes mellitus. J Am Coll Cardiol. 1999;34(7):2007–14. Millasseau SC, Guigui FG, Kelly RP, Prasad K, Cockcroft JR, Ritter JM, et al. Noninvasive assessment of the digital volume pulse. Comparison with the peripheral pressure pulse. Hypertension. 2000;36(6):952–6. Takazawa K, Tanaka N, Fujita M, Matsuoka O, Saiki T, Aikawa M, et al. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension. 1998;32(2):365–70. Woodman RJ, Watts GF. Measurement and application of arterial stiffness in clinical research: focus on new methodologies and diabetes mellitus. Med Sci Monit. 2003;9(5):RA81–9. Woodman RJ, Watts GF, Kingwell BA, Dart AM. Interpretation of the digital volume pulse: its relationship with large and small artery compliance. Clin Sci (Lond). 2003;104(3):283–4. author reply 285. Gunarathne A, Patel JV, Hughes EA, Lip GY. Measurement of stiffness index by digital volume pulse analysis technique: clinical utility in cardiovascular disease risk stratification. Am J Hypertens. 2008;21(8):866–72. Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin Sci. 2002;103(4):371–7. Gopaul NK, Manraj MD, Hebe A, Lee Kwai Yan S, Johnston A, Carrier MJ, et al. Oxidative stress could precede endothelial dysfunction and insulin resistance in Indian Mauritians with impaired glucose metabolism. Diabetologia. 2001;44(6):706–12. Laucevicius A, Ryliskyte L, Petruioniene Z, Kovaite M, Misonis N. First experience with salbutamol-induced changes in the photoplethysmographic digital volume pulse. Seminars in Cardiology. 2002;8(1):87–93. Title LM, Cummings PM, Giddens K, Nassar BA. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol. 2000;36(7):2185–91. Watanabe K, Oba K, Suzuki T, Ouchi M, Suzuki K, Futami-Suda S, et al. Oral glucose loading attenuates endothelial function in normal individual. Eur J Clin Invest. 2011;41(5):465–73. Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999;34(1):146–54. World Health Organization, International Diabetes Federation: Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: Report of a WHO/IDF Consultation. 2006. Available from: www.who.int/diabetes/publications/diagnosis_diabetes2006/en/. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Nephropathy in diabetes. Diabetes Care. 2004;27 Suppl 1:S79–83. Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23(1):57. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care. 1999;22(6):920–4. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. 1999;22(2):233–40. Ruderman NB, Haudenschild C. Diabetes as an atherogenic factor. Prog Cardiovasc Dis. 1984;26(5):373–412. Shin JY, Lee HR, Lee DC. Increased arterial stiffness in healthy subjects with high-normal glucose levels and in subjects with pre-diabetes. Cardiovasc Diabetol. 2011;10:30. Li CH, Wu JS, Yang YC, Shih CC, Lu FH, Chang CJ. Increased arterial stiffness in subjects with impaired glucose tolerance and newly diagnosed diabetes but not isolated impaired fasting glucose. J Clin Endocrinol Metab. 2012;97(4):E658–62. Xu L, Jiang CQ, Lam TH, Cheng KK, Yue XJ, Lin JM, et al. Impact of impaired fasting glucose and impaired glucose tolerance on arterial stiffness in an older Chinese population: the Guangzhou Biobank Cohort Study-CVD. Metab Clin Exp. 2010;59(3):367–72. Chou C-H, Tsai W-C, Wang M-C, Ho C-S, Li Y-H, Tsai L-M, et al. Effects of deranged glucose homeostasis on peripheral arterial stiffness index in patients with pre-diabetes mellitus. Int Heart J. 2013;54(1):27–32. Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009;54(6):1328–36. Diabetes in Australia: A Snapshot, 2004–05. Available from: www.abs.gov.au/ausstats/[email protected]/mf/4820.0.55.001. Zhang L, Qiao Q, Tuomilehto J, Hammar N, Janus ED, Soderberg S, et al. Blood lipid levels in relation to glucose status in seven populations of Asian origin without a prior history of diabetes: the DECODA study. Diabetes Metab Res Rev. 2009;25(6):549–57. Deedwania P. Hypertension, dyslipidemia, and insulin resistance in patients with diabetes mellitus or the cardiometabolic syndrome: benefits of vasodilating beta-blockers. J Clin Hypertens (Greenwich). 2011;13(1):52–9. Zelmanovitz T, Gerchman F, Balthazar AP, Thomazelli FC, Matos JD, Canani LH. Diabetic nephropathy. Diabetol Metab Syndr. 2009;1(1):10. Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. The vascular impact of aging and vasoactive drugs: comparison of two digital volume pulse measurements. Am J Hypertens. 2003;16(6):467–72. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Piccoli A, Valentini U, et al. Endothelial dysfunction in small resistance arteries of patients with non-insulin-dependent diabetes mellitus. J Hypertens. 2001;19(5):913–9. Sourij H, Zweiker R, Wascher TC. Effects of pioglitazone on endothelial function, insulin sensitivity, and glucose control in subjects with coronary artery disease and new-onset type 2 diabetes. Diabetes Care. 2006;29(5):1039–45. Ceriello A, Bortolotti N, Crescentini A, Motz E, Lizzio S, Russo A, et al. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest. 1998;28(4):329–33.