Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications

NMR in Biomedicine - Tập 17 Số 5 - Trang 240-262 - 2004
Bernard Gallez1, Christine Baudelet1, Bénédicte F. Jordan1
1Biomedical Magnetic Resonance Unit and Laboratory of Medicinal Chemistry and Radiopharmacy, Université Catholique de Louvain, Brussels, Belgium

Tóm tắt

AbstractThis review paper attempts to provide an overview of the principles and techniques that are often termed electron paramagnetic resonance (EPR) oximetry. The paper discusses the potential of such methods and illustrates they have been successfully applied to measure oxygen tension, an essential parameter of the tumor microenvironment. To help the reader understand the motivation for carrying out these measurements, the importance of tumor hypoxia is first discussed: the basic issues of why a tumor is hypoxic, why these hypoxic microenvironments promote processes driving malignant progression and why hypoxia dramatically influences the response of tumors to cytotoxic treatments will be explained. The different methods that have been used to estimate the oxygenation in tumors will be reviewed. To introduce the basics of EPR oximetry, the specificity of in vivo EPR will be discussed by comparing this technique with NMR and MRI. The different types of paramagnetic oxygen sensors will be presented, as well as the methods for recording the information (EPR spectroscopy, EPR imaging, dynamic nuclear polarization). Several applications of EPR for characterizing tumor oxygenation will be illustrated, with a special emphasis on pharmacological interventions that modulate the tumor microenvironment. Finally, the challenges for transposing the method into the clinic will also be discussed. Copyright © 2004 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1016/S0360-3016(98)00324-1

Less JR, 1991, Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimension, Cancer Res., 51, 265

10.1016/S1359-6446(03)02686-2

10.1016/S0002-9440(10)65006-7

McDonald DM, 2002, Significance of blood vessel leakiness in cancer, Cancer Res., 62, 5381

Boucher Y, 1996, Tumor angiogenesis and interstitial hypertension, Cancer Res., 56, 4264

10.1038/bjc.1955.55

Vaupel P, 1989, Blood flow, oxygen and nutrient supply, and metabolic environment of human tumors: a review, Cancer Res., 49, 6449

10.1038/sj.bjc.6690273

10.1007/978-1-4615-4863-8_74

10.1016/S1053-4296(98)80040-4

10.1016/0360-3016(86)90153-7

Dewhirst MW, 1996, Microvascular studies on the origins of perfusion‐limited hypoxia, Br. J. Cancer, 27, S247

10.1038/bjc.1990.406

Chaplin DJ, 1990, Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumors, Br. J. Cancer, 62, 903

Hill SA, 1996, Microregional blood flow in murine and human tumors assessed using laser‐Doppler microprobes, Br. J. Cancer, 27, S260

10.1152/ajpheart.1999.277.2.H551

Kimura H, 1996, Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma, Cancer Res., 56, 5522

Intaglietta M, 1977, Dynamics of microvascular flow in implanted mouse mammary tumors, Bibl. Anat., 15, 273

10.1006/mvre.1996.0025

10.1152/ajpheart.1994.266.5.H1822

10.1016/S0026-2862(02)00012-2

10.1080/095530000138259

10.1073/pnas.85.24.9533

10.1038/sj.bjc.6690586

Cairns RA, 2001, Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors, Cancer Res., 61, 8903

10.1038/379088a0

Hockel M, 1999, Hypoxic cervical cancers with low apoptotic index are highly aggressive, Cancer Res., 59, 4525

10.1172/JCI13374

10.1038/nrc704

10.1002/0470868716.ch17

10.1093/jnci/93.4.266

Hall EJ, 1994, Radiobiology for the Radiologist

10.1259/0007-1285-26-312-638

Hill RP, 1992, The Basic Science of Oncology, 259

10.1016/0360-3016(88)90002-8

10.1016/0167-8140(93)90025-4

10.1006/gyno.1993.1262

10.1016/S1053-4296(96)80031-2

10.1016/0360-3016(93)90280-9

10.2307/3578556

10.2307/3578725

10.1007/978-1-4615-0061-2_15

Durand RE, 1994, The influence of microenvironmental factors during cancer therapy, In Vivo, 8, 691

10.1038/bjc.1968.34

Olive PL, 1989, Distribution, oxygenation and clonogenicity of macrophages in a murine tumor, Cancer Commun., 1, 93, 10.3727/095535489820875273

Teicher BA, 1990, Classification of anti‐neoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaII murine fibrosarcoma, Cancer Res., 50, 3339

10.1038/bjc.1991.405

Anthoney DA, 1996, Microsatellite instability, apoptosis, and loss of p53 function in drug‐resistant tumor cells, Cancer Res., 56, 1374

10.1038/9511

10.1023/A:1013181107707

10.1080/02841860152708206

10.1016/0360-3016(90)90018-F

10.1002/1097-0215(20001020)90:5<237::AID-IJC1>3.0.CO;2-T

Dewhirst MW, 1994, Determination of local oxygen consumption rates in tumors, Cancer Res., 54, 3333

Dewhirst MW, 1996, Arteriolar oxygenation in tumour and subcutaneous arterioles: effects of inspired air oxygen content, Br. J. Cancer, 27, S241

10.1016/S0360-3016(98)00312-5

10.1016/S0360-3016(00)01523-6

10.1259/bjr.72.859.10624317

10.1667/0033-7587(2001)155[0837:MOTOIV]2.0.CO;2

10.1152/ajpheart.2001.280.6.H2533

10.1016/S0167-8140(00)00275-9

10.1088/0031-9155/47/10/315

Jarm T, 2002, Oxygenation and blood flow in tumors treated with hydralazine: evaluation with a novel luminescence‐based fiber‐optic sensor, Technol. Health Care, 10, 363, 10.3233/THC-2002-10501

10.1002/mrm.10318

Jordan BF, 2002, Insulin increases the sensitivity of tumors to irradiation: involvement of an increase in tumor oxygenation mediated by a nitric oxide‐dependent decrease of the tumor cells oxygen consumption, Cancer Res., 62, 3555

10.1002/ijc.10786

10.1016/S0360-3016(02)04505-4

10.1038/sj.bjc.6601047

10.1016/S1095-6433(01)00542-6

10.1007/978-1-4615-3428-0_20

10.1016/S0006-3495(96)79764-3

10.1038/sj.bjc.6690272

10.1364/AO.39.005231

10.1016/0005-2728(88)90069-2

Varghese AJ, 1976, Hypoxia‐dependent reduction of 1‐(2‐nitro‐1‐imidazolyl)‐3‐methoxy‐2‐propanol by Chinese hamster ovary cells and KHT tumor cells in vitro and in vivo, Cancer Res., 36, 3761

10.1038/bjc.1985.33

10.1016/0006-2952(90)90086-Z

10.1038/bjc.1981.79

10.1002/ijc.2910610422

10.2307/3580034

10.1016/S0167-8140(03)00028-8

10.1016/S0968-0896(00)00279-0

10.1016/S0167-8140(97)00186-2

10.1016/S0360-3016(96)00539-1

10.1016/S0167-8140(99)00010-9

10.1002/jmri.10181

10.1016/S0079-6565(99)00022-9

10.1097/00004424-198805000-00006

10.1097/00004424-198503000-00009

10.1007/978-1-4684-4895-5_81

10.1002/(SICI)1099-1492(199605)9:3<125::AID-NBM405>3.0.CO;2-F

McIntyre DJO, 1999, Tumour oxygenation measurements by F‐19 magnetic resonance imaging of perfluorocarbons, Curr. Sci., 76, 753

10.1016/S0360-3016(00)01460-7

10.1002/jcb.10404

10.1016/S0360-3016(02)02822-5

Aboagye EO, 1998, Preclinical development and current status of the fluorinated 2‐nitroimidazole hypoxia probe N‐(2‐hydroxy‐3,3,3‐trifluoropropyl)‐2‐(2‐ nitro‐1‐imidazolyl) acetamide (SR 4554, CRC 94/17): a non‐invasive diagnostic probe for the measurement of tumor hypoxia by magnetic resonance spectroscopy and imaging, and by positron emission tomography, Anticancer Drug Res., 13, 703

10.1073/pnas.87.24.9868

10.1002/mrm.1910140108

10.1002/nbm.716

10.1002/nbm.728

10.1016/S1470-2045(02)00929-4

10.1097/00004424-199406001-00053

10.1016/0360-3016(95)00072-1

10.1038/bjc.1997.172

10.1016/S0360-3016(97)00326-X

10.1016/S0360-3016(00)00694-5

10.1007/s003300100996

10.1002/jmri.1166

10.1016/S0360-3016(02)02825-0

10.1002/(SICI)1099-1492(199904)12:2<98::AID-NBM556>3.0.CO;2-I

10.1016/S0730-725X(99)00089-2

10.1016/S0730-725X(98)00088-5

10.1016/S0360-3016(98)00038-8

10.1002/mrm.10468

10.1088/0031-9155/49/15/006

Baudelet C, 2003, Non invasive mapping of spontaneous blood flow/oxygen fluctuations in tumors using functional Magnetic Resonance Imaging and their modifications by pharmacological treatments, Proc. Int. Soc. Mag. Reson. Med., 11, 1225

10.1016/0891-5849(93)90030-X

10.1002/mrm.1910350113

Nilges MJ, 1989, 1 GHz in vivo ESR spectrometer operating with a surface probe, Phys. Med., 5, 195

Berliner LJ, 1991, EPR Imaging and in Vivo EPR, 65

Halpern HJ, 1991, EPR Imaging and in Vivo EPR, 45

10.1007/978-1-4615-0061-2_2

10.1053/srao.2001.18104

10.1007/978-1-4615-0061-2_4

10.1259/bjr.74.885.740782

10.1006/jmre.1998.1697

10.1002/mrm.10133

10.1007/978-1-4615-0061-2_7

10.1002/mrm.1910360507

10.1016/0142-9612(96)89664-5

10.1021/js9505105

Halpern HJ, 1999, Diminished aqueous microviscosity of tumors in murine models measured with in vivo radiofrequency electron paramagnetic resonance, Cancer Res., 59, 5836

Hyde JS, 1989, Spin Labeling: Theory and Applications: Biological Magnetic Resonance, 399, 10.1007/978-1-4613-0743-3_8

Swartz HM, 1991, EPR Imaging and in Vivo EPR, 261

10.1209/0295-5075/8/3/012

10.1021/j100193a016

10.1016/0379-6779(92)90020-J

Lewis IC, 1981, Electron spin resonance and the mechanism of carbonization, Chem. Phys. Carbon, 17, 1

10.1088/0031-9155/43/7/012

10.1006/jmre.2000.2274

10.1088/0031-9155/43/7/017

Kocherginsky N, 1995, Nitroxide Spin Labels: Reactions in Biology and Chemistry, 15

10.1002/mrm.1910300510

10.1016/0730-725X(94)92353-1

10.1073/pnas.91.26.13047

10.1016/S0006-3495(94)80551-X

10.1006/jmrb.1995.1019

10.1006/jmre.1996.1055

10.1021/bi00432a022

10.1097/00004424-198706000-00010

10.1039/f19878300191

10.1002/mrm.1910030126

Kuppusamy P, 2002, Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels, Cancer Res., 62, 307

10.1002/mrm.10254

10.1006/jmre.1998.1438

10.1006/jmre.2000.2282

10.1006/jmre.2001.2379

10.1002/mrm.10594

10.1002/mrm.10408

10.1002/1522-2586(200012)12:6<929::AID-JMRI17>3.0.CO;2-J

10.1002/mrm.10222

10.1073/pnas.042671399

10.1021/jo011068f

10.1042/BST0300248

10.1016/S1046-2023(03)00077-X

10.1073/pnas.90.12.5438

10.1213/01.ANE.0000055648.41152.63

10.1002/jmri.10192

10.1016/S0006-8993(01)02786-X

10.1016/S0891-5849(01)00784-5

10.1002/mrm.1910310207

10.1046/j.1365-2818.1998.00410.x

10.1002/mrm.1910380109

Jordan BF, 1998, Carbon‐centered radicals as oxygen sensors for in vivo electron paramagnetic resonance: screening for an optimal probe among commercially available charcoals, MAGMA, 7, 121, 10.1007/BF02592236

10.1002/(SICI)1522-2594(199910)42:4<627::AID-MRM2>3.0.CO;2-M

10.1016/0927-7757(93)02630-W

10.1007/978-1-4615-0061-2_9

10.1088/0031-9155/46/12/317

10.1002/mrm.1234

10.1002/mrm.1910310218

10.1002/mrm.1910330214

10.1002/mrm.20077

10.1002/mrm.1910300210

10.1126/science.2981437

10.1002/mrm.1910040410

10.1016/0022-2364(82)90039-7

10.1016/0022-2364(89)90368-5

10.1016/0020-711X(92)90248-Y

10.1007/978-1-4615-0061-2_6

10.1016/0022-2364(89)90319-3

Woods RK, 1989, Mapping oxygen concentrations with 4D electron spin resonance spectral‐spatial imaging, Phys. Med., 2, 121

10.1073/pnas.91.8.3388

10.1073/pnas.96.8.4586

10.1002/1522-2594(200006)43:6<804::AID-MRM5>3.0.CO;2-B

10.1002/mrm.1262

10.1088/0031-9155/43/7/003

10.1023/A:1015994629341

10.1016/0022-2364(88)90123-0

10.1088/0031-9155/43/7/008

10.1088/0031-9155/43/7/010

10.1002/mrm.1910140113

10.1007/978-1-4615-0061-2_20

10.1016/0022-2364(89)90392-2

10.1016/0730-725X(93)90011-2

10.1002/mrm.1910340213

10.1006/jmcc.1995.0042

10.1002/mrm.1910350213

10.1007/978-1-4615-5399-1_36

10.1007/BF00786005

10.1007/978-1-4615-0061-2_16

10.1002/mrm.1910340614

10.1152/jappl.1996.80.2.552

10.1002/mrm.1910400120

10.1006/niox.2001.0383

10.1016/S0925-4439(02)00170-9

10.1006/niox.1999.0238

10.1016/0891-5849(95)02221-X

10.1016/S0168-3659(00)00351-5

10.1016/j.freeradbiomed.2003.11.024

10.1002/mrm.1910300507

10.1016/S0891-5849(03)00496-9

10.1007/978-1-4615-5865-1_67

10.1002/jmri.10192

Song CW, 1998, Blood Perfusion and Microenvironment of Human Tumors, 193

10.1006/bbrc.1993.1444

10.1016/S0360-3016(98)00403-9

10.1002/ijc.20046

Sersa G, 2001, Reduced tumor oxygenation by treatment with vinbastine, Cancer Res., 61, 4266

10.1038/sj.bjc.6600606

Goda F, 1995, Changes of oxygen tension in experimental tumors after a single dose of X‐ray irradiation, Cancer Res., 55, 2249

10.2307/3579262

Goda F, 1996, The relationship between partial pressure of oxygen and perfusion in two murine tumors after X‐ray irradiation: a combined gadopentetate dimeglumine dynamic magnetic resonance imaging and in vivo electron paramagnetic resonance oximetry study, Cancer Res., 56, 3344

10.2307/3579872

10.1096/fj.02-0487fje

Pogue BW, 2003, Photodynamic therapy with verteporfin in the radiation‐induced fibrosarcoma‐1 tumor causes enhanced radiation sensitivity, Cancer Res., 63, 1025

10.1016/S1095-6433(01)00545-1

10.1667/0033-7587(2001)155[0466:RTRCWT]2.0.CO;2

10.1097/00004424-198808000-00013

10.1016/0378-4274(92)90105-S

10.1002/jps.2600810603

10.1016/S0891-5849(97)00322-5

10.1021/jm9802160

10.1016/S0891-5849(00)00405-6

10.1002/(SICI)1522-2594(199907)42:1<193::AID-MRM25>3.0.CO;2-C

10.1007/BF01759782

10.1007/978-1-4615-0061-2_22

10.1088/0031-9155/43/7/008

10.1002/mrm.10029