Assessment of titanium dioxide nanoparticle toxicity in the rainbow trout (Onchorynchus mykiss) liver and gill cell lines RTL-W1 and RTgill-W1 under particular consideration of nanoparticle stability and interference with fluorometric assays
Tài liệu tham khảo
Andreeva, 2010, Structure of fish serum albumins, J. Evol. Biochem. Physiol., 46, 135, 10.1134/S0022093010020018
Bermejo-Nogales, 2017, Negligible cytotoxicity induced by different titanium dioxide nanoparticles in fish cell lines, Ecotoxicol. Environ. Saf., 138, 309, 10.1016/j.ecoenv.2016.12.039
Bihari, 2008, Optimized dispersion of nanoparticles for biological in vitro and in vivo studies, Part. Fibre Toxicol., 5, 10.1186/1743-8977-5-14
Birdsall, 1983, Correction for light-absorption in fluorescence studies of protein-ligand Interactions, Anal. Biochem., 132, 353, 10.1016/0003-2697(83)90020-9
Chen, 2011, Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure, Aquat. Toxicol., 101, 493, 10.1016/j.aquatox.2010.12.004
Clemente, 2012, Ecotoxicology of nano-TiO2 an evaluation of its toxicity to organisms of aquatic ecosystems. Int, J. Environ. Res., 6, 33
Cohen, 2013, Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry, Nanotoxicology, 7, 10.3109/17435390.2012.666576
Cohen, 2014, An integrated approach for the in vitro dosimetry of engineered nanomaterials, Part. Fibre Toxicol., 11
Dayeh, 2003, The use of fish-derived cell lines for investigation of environmental contaminants, Curr. Protoc. Toxicol., 10.1002/0471140856.tx0105s15
Dubey, 2015, Oxidative stress and nano-toxicity induced by TiO2 and ZnO on WAG cell line, PLoS One, 10, 10.1371/journal.pone.0127493
Evans, 1987, The fish gill - site of action and model for toxic effects of environmental-pollutants, Environ. Health Perspect., 71, 47, 10.1289/ehp.877147
Evonik
Federici, 2007, Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects, Aquat. Toxicol., 84, 415, 10.1016/j.aquatox.2007.07.009
George, 2014, Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos, Environ. Sci. Technol., 48, 6374, 10.1021/es405768n
Gstraunthaler, 2003, Alternatives to the use of fetal bovine serum: serum-free cell culture, Altex-Alternativen Zu Tierexperimenten, 20, 275
Guadagnini, 2015, Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests, Nanotoxicology, 9, 13, 10.3109/17435390.2013.829590
Guiot, 2013, Stabilization of TiO2 nanoparticles in complex medium through a pH adjustment protocol, Environ. Sci. Technol., 47, 1057, 10.1021/es3040736
Hinderliter, 2010, ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies, Part. Fibre Toxicol., 7
Holder, 2012, Particle-induced artifacts in the MTT and LDH viability assays, Chem. Res. Toxicol., 25, 1885, 10.1021/tx3001708
Januar, 2015, Concentration of fish serum albumin (FSA) in the aqueous extract of Indonesian perciformes fishes' muscle tissue, Nat. Prod. Res., 29, 2230, 10.1080/14786419.2014.1003298
Ji, 2010, Dispersion and stability optimization of TiO2 nanoparticles in cell culture media, Environ. Sci. Technol., 44, 7309, 10.1021/es100417s
Jovanovic, 2011, Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820), Ecotoxicol. Environ. Saf., 74, 675, 10.1016/j.ecoenv.2010.10.017
Kevin, 2010, Toxicokinetics in fishes: xenobiotic transport and binding in plasma, 79
Kroll, 2012, Interference of engineered nanoparticles with in vitro toxicity assays, Arch. Toxicol., 86, 1123, 10.1007/s00204-012-0837-z
Lammel, 2013, Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2, Part. Fibre Toxicol., 10, 27, 10.1186/1743-8977-10-27
Lee, 2012, Oxidative stress in juvenile common carp (Cyprinus carpio) exposed to TiO2 nanoparticles, Mol. Cell. Toxicol., 8, 357, 10.1007/s13273-012-0044-2
Lorenzen, 1993, Effects of UV irradiation of cell-culture medium on PCB-mediated porphyrin accumulation and EROD induction in chick-embryo hepatocytes, Toxicol. in Vitro, 7, 159, 10.1016/0887-2333(93)90127-Q
Lupu, 2013, The noncellular reduction of MTT tetrazolium salt by TiO2 nanoparticles and its implications for cytotoxicity assays, Toxicol. in Vitro, 27, 1445, 10.1016/j.tiv.2013.03.006
Mawson, 2011, Ultrasound in enzyme activation and inactivation, 369
Mišı́k, 1999, EPR characterization of free radical intermediates formed during ultrasound exposure of cell culture media, Free Radic. Biol. Med., 26, 936, 10.1016/S0891-5849(98)00282-2
Ong, 2014, Widespread nanoparticle-assay interference: implications for nanotoxicity testing, PLoS One, 9, 10.1371/journal.pone.0090650
Purushothaman, 2014, Acute exposure to titanium dioxide (TiO2) induces oxidative stress in zebrafish gill tissues, Toxicol. Environ. Chem., 96, 890, 10.1080/02772248.2014.987511
Ramsden, 2009, Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain, Ecotoxicology, 18, 939, 10.1007/s10646-009-0357-7
Reeves, 2008, Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells, Mutat. Res. Fundam. Mol. Mech. Mutagen., 640, 113, 10.1016/j.mrfmmm.2007.12.010
Schirmer, 1997, Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture, Toxicol. in Vitro, 11, 10.1016/S0887-2333(97)00002-7
Scown, 2009, High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function, Toxicol. Sci., 109, 372, 10.1093/toxsci/kfp064
Sekar, 2014, DNA damage and repair following in vitro exposure to two different forms of titanium dioxide nanoparticles on trout erythrocyte, Environ. Toxicol., 29, 117, 10.1002/tox.20778
Srikanth, 2015, Assessment of cytotoxicity and oxidative stress induced by titanium oxide nanoparticles on Chinook salmon cells, Environ. Sci. Pollut. Res., 22, 15579, 10.1007/s11356-015-4740-z
Stoien, 1974, Effect of near-ultraviolet and visible light on mammalian-cells in culture. 2. Formation of toxic photoproducts in tissue-culture medium by blacklight, Proc. Natl. Acad. Sci. U. S. A., 71, 3961, 10.1073/pnas.71.10.3961
Suttiponparnit, 2011, Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties, Nanoscale Res. Lett., 6, 10.1007/s11671-010-9772-1
Taurozzi, 2013, A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media, Nanotoxicology, 7, 389, 10.3109/17435390.2012.665506
Teeguarden, 2007, Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments, Toxicol. Sci., 95, 300, 10.1093/toxsci/kfl165
Thomas, 2011, Effects of dispersed aggregates of carbon and titanium dioxide engineered nanoparticles on rainbow trout hepatocytes, J. Toxic. Environ. Health A, 74, 466, 10.1080/15287394.2011.550557
van der Valk, 2010, Optimization of chemically defined cell culture media - replacing fetal bovine serum in mammalian in vitro methods, Toxicol. in Vitro, 24, 1053, 10.1016/j.tiv.2010.03.016
Vevers, 2008, Genotoxic and cytotoxic potential of titanium dioxide (TiO(2)) nanoparticles on fish cells in vitro, Ecotoxicology, 17, 410, 10.1007/s10646-008-0226-9
Vignardi, 2015, Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766), Aquat. Toxicol., 158, 218, 10.1016/j.aquatox.2014.11.008
Wu, 2014, Dispersion method for safety research on manufactured nanomaterials, Ind. Health, 52, 54, 10.2486/indhealth.2012-0218
Yue, 2015, Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition, Nanotoxicology, 9, 54, 10.3109/17435390.2014.889236
