Assessment of the soil fertility status in Benin (West Africa) – Digital soil mapping using machine learning

Geoderma Regional - Tập 28 - Trang e00444 - 2022
Kpade O.L. Hounkpatin1, Aymar Y. Bossa2,3, Yacouba Yira2,4, Mouïnou A. Igue5, Brice A. Sinsin2,6
1Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-75007 Uppsala, Sweden
2Hydro-Climate Services, BV 30051 Ouagadougou, Burkina Faso
3Department of Water for Agriculture and the Society, National Water Institute, University of Abomey-Calavi, Cotonou 01, P.O. Box 526, Benin
4Applied Science and Technology Research Institute – IRSAT/CNRST, Ouagadougou, Burkina Faso
5National Institute of Agricultural Research of Benin, 01 BP: 988 Cotonou, Bénin
6Laboratory of Applied Ecology, University of Abomey-Calavi, 01 BP 526 Cotonou, Benin

Tài liệu tham khảo

Abate, 2016, Effects of land use, soil depth and topography on soil physicochemical properties along the toposequence at the Wadla Delanta Massif, Northcentral Highlands Ethiopia Environ. Pollut., 5 Adhikari, 2014, Digital mapping of soil organic carbon contents and stocks in Denmark, PLoS One, 9, 10.1371/journal.pone.0105519 Aholoukpè, 2011 Amonmide, 2019, Contribution à l’évaluation du niveau de fertilité des sols dans les systèmes de culture à base du coton au Bénin, Int. J. Biol. Chem. Sci., 13, 1846, 10.4314/ijbcs.v13i3.52 Amoussou, 2016 Arrouays, 2017, Soil legacy data rescue via GlobalSoilMap and other international and national initiatives, GeoResJ, 14, 1, 10.1016/j.grj.2017.06.001 Azuka, 2020, Land use and slope position effect on the hydrological properties of sandy loam soils of Koupendri catchment, North-West of Benin, Trop. Subtrop. Agroecosyst., 23, 10.56369/tsaes.2876 Behrens, 2014, Hyper-scale digital soil mapping and soil formation analysis, Geoderma, 213, 578, 10.1016/j.geoderma.2013.07.031 Blume, 2016, Threats to the soil functions, 485 Bonfatti, 2016, Digital mapping of soil carbon in a viticultural region of southern Brazil, Geoderma, 261, 204, 10.1016/j.geoderma.2015.07.016 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Breure, 2012, Ecosystem services: a useful concept for soil policy making!, Curr. Opin. Environ. Sustain., 4, 578, 10.1016/j.cosust.2012.10.010 Calzolari, 2016, A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale, Geoderma, 261, 190, 10.1016/j.geoderma.2015.07.013 Čeh, 2018, Estimating the performance of random forest versus multiple regression for predicting prices of the apartments, ISPRS Int. J. Geo Inf., 7, 168, 10.3390/ijgi7050168 Challinor, 2007, Assessing the vulnerability of food crop systems in Africa to climate change, Clim. Chang., 83, 381, 10.1007/s10584-007-9249-0 Charzyński, 2017, Soil sealing influence on some microbiological biochemical and physicochemical properties of Ekranic Technosols of Toruń, SUITMA, 9 Cincotta, 2019, Soil aggregates as a source of dissolved organic carbon to streams: an experimental study on the effect of solution chemistry on water extractable carbon, Front. Environ. Sci., 7, 172, 10.3389/fenvs.2019.00172 Conrad, 2015, System for automated geoscientific analyses (SAGA) v. 2.1. 4, Geosci. Model Dev., 8, 1991, 10.5194/gmd-8-1991-2015 Dansi, A., Vodouhè, R., Azokpota, P., Yedomonhan, H., Assogba, P., Adjatin, A., Loko, Y., Dossou-Aminon, I., Akpagana, K.J.T.S.W.J., 2012. Diversity of the neglected and underutilized crop species of importance in Benin. Sci. World J. 2012. De Groot, 2010, Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making, Ecol. Complex., 7, 260, 10.1016/j.ecocom.2009.10.006 Dharumarajan, 2017, Spatial prediction of major soil properties using random Forest techniques-a case study in semi-arid tropics of South India, Geoderma Reg., 10, 154, 10.1016/j.geodrs.2017.07.005 Dossou-Yovo, 2016, Combining no-tillage, rice straw mulch and nitrogen fertilizer application to increase the soil carbon balance of upland rice field in northern Benin, Soil Tillage Res., 163, 152, 10.1016/j.still.2016.05.019 Flynn, 2019, High-resolution digital soil mapping of multiple soil properties: an alternative to the traditional field survey?, South African J. Plant Soil, 36, 237, 10.1080/02571862.2019.1570566 Forkuor, 2017, High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models, PLoS One, 12, 10.1371/journal.pone.0170478 Gomes, 2019, Modelling and mapping soil organic carbon stocks in Brazil, Geoderma, 340, 337, 10.1016/j.geoderma.2019.01.007 Grant, 2016, 1 Greiner, 2017, Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services, Land Use Policy, 69, 224, 10.1016/j.landusepol.2017.06.025 Günal, 2015, Threats to sustainability of soil functions in central and Southeast Europe, Sustainability, 7, 2161, 10.3390/su7022161 Hengl, 2015, Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions, PLoS One, 10, e0125814, 10.1371/journal.pone.0125814 Hengl, 2017, SoilGrids250m: global gridded soil information based on machine learning, PLoS One, 12, 10.1371/journal.pone.0169748 Hengl, 2017, Soil nutrient maps of sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning, Nutr. Cycl. Agroecosyst., 109, 77, 10.1007/s10705-017-9870-x Hien, 2006, Carbon sequestration in a savannah soil in southwestern Burkina as affected by cropping and cultural practices, Arid Land Res. Manag., 20, 133, 10.1080/15324980500546007 Holleran, 2015, Quantifying soil and critical zone variability in a forested catchment through digital soil mapping, Soil, 1, 47, 10.5194/soil-1-47-2015 Holmes, 1999, 1 Hopkins, 1987, Vegetation Map of Africa, A Descriptive Memoir to Accompany the Unesco/AETFAT/UNSO Vegetation map of Africa. JSTOR. The Vegetation of Africa Horning, 2010, Random Forests: An algorithm for image classification and generation of continuous fields data sets, vol. 911 Hounkpatin, 2018, Predicting reference soil groups using legacy data: a data pruning and random Forest approach for tropical environment (Dano catchment, Burkina Faso), Sci. Rep., 8, 9959, 10.1038/s41598-018-28244-w Hounkpatin, 2018, Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso), Catena, 166, 298, 10.1016/j.catena.2018.04.013 Hounnou, 2018, Variability of temperature, precipitation and potential evapotranspiration time series analysis in Republic of Benin, IJAER, 4, 991 Hu, 2020, Estimating Forest stock volume in Hunan Province, China, by integrating in situ plot data, Sentinel-2 images, and linear and machine learning regression models, Remote Sens., 12, 186, 10.3390/rs12010186 Igué, 2014, Projet « Evaluation du statut nutritionnel des sols des différentes zones agroécologiques du Bénin ». Rapport technique final Igue, 2013, 12 Igue, 2016, Détermination Des Formules D’engrais Minéraux Et Organiques Sur Deux Types De Sols Pour Une Meilleure Productivité De Maïs (Zea mays l.) Dans La Commune De Banikoara (Nord-Est Du Bénin), Eur. Sci. J., 12, 16 Igué, 2018, Springer, 105 INSAE, 2017 Kasraei, 2021, Quantile regression as a generic approach for estimating uncertainty of digital soil maps produced from machine-learning, Environ. Model Softw., 144, 10.1016/j.envsoft.2021.105139 Kempen, 2019, Mapping topsoil organic carbon concentrations and stocks for Tanzania, Geoderma, 337, 164, 10.1016/j.geoderma.2018.09.011 Kogo, 2019, Modelling climate suitability for rainfed Maize cultivation in Kenya using a Maximum Entropy (MaxENT) approach, Agronomy, 9, 727, 10.3390/agronomy9110727 Koné, 2010, Effet de différentes sources de phosphate sur le rendement du riz sur sols acides, Agron. Afr., 22, 55 Kouelo, 2016, Soil conservation practices in three watersheds of Benin: farmers cropping systems characterization, Afr. J. Agric. Res., 11, 507, 10.5897/AJAR2015.10277 Kuhn, 2013, 26 Kuhn Kumhálová, 2011, The impact of topography on soil properties and yield and the effects of weather conditions, Precis. Agric., 12, 813, 10.1007/s11119-011-9221-x Lawrence, 1989, A concordance correlation coefficient to evaluate reproducibility, Biometrics, 255 Leenaars, 2013 Leenaars, 2012, 3 Leenaars, 2014, 51 Leenaars, 2018, Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa, Geoderma, 324, 18, 10.1016/j.geoderma.2018.02.046 Li, 2018, Mapping soil cation-exchange capacity using Bayesian Modeling and proximal sensors at the field scale, Soil Sci. Soc. Am. J., 82, 10.2136/sssaj2017.10.0356 Ma, 2017, Downscaling annual precipitation with TMPA and land surface characteristics in China, Int. J. Climatol., 37, 5107, 10.1002/joc.5148 Madena, 2012, Soil functions-Today's situation and further development under climate change, Erdkunde, 221, 10.3112/erdkunde.2012.03.03 Malone, 2011, Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes, Geoderma, 160, 614, 10.1016/j.geoderma.2010.11.013 McBratney, 2003, On digital soil mapping, Geoderma, 117, 3, 10.1016/S0016-7061(03)00223-4 Miller, 2015, Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks, Soil, 1, 217, 10.5194/soil-1-217-2015 Miller, 2015, Impact of multi-scale predictor selection for modeling soil properties, Geoderma, 239, 97, 10.1016/j.geoderma.2014.09.018 Minai, 2019 Minasny, 2008, Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy, Chemom. Intell. Lab. Syst., 94, 72, 10.1016/j.chemolab.2008.06.003 Minasny, 2016, Digital soil mapping: a brief history and some lessons, Geoderma, 264, 301, 10.1016/j.geoderma.2015.07.017 Mosleh, 2016, The effectiveness of digital soil mapping to predict soil properties over low-relief areas, Environ. Monit. Assess., 188, 195, 10.1007/s10661-016-5204-8 Nawar, 2015, Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an arid region, Remote Sens., 7, 1181, 10.3390/rs70201181 Nelson, 2011, An error budget for different sources of error in digital soil mapping, Eur. J. Soil Sci., 62, 417, 10.1111/j.1365-2389.2011.01365.x Neuenschwander, 2011 Padarian, 2019, Using deep learning to predict soil properties from regional spectral data, Geoderma Reg., 16 Phachomphon, 2010, Estimating carbon stocks at a regional level using soil information and easily accessible auxiliary variables, Geoderma, 155, 372, 10.1016/j.geoderma.2009.12.020 Piikki, 2015, Three-dimensional digital soil mapping of agricultural fields by integration of multiple proximal sensor data obtained from different sensing methods, Precis. Agric., 16, 29, 10.1007/s11119-014-9381-6 Poggio, 2019, SoilGrids: consistent soil information to assess and map soil functions at global scale, Wageningen soil conference 2019, ISRIC, 50 Poppiel, 2019, Mapping at 30 m resolution of soil attributes at multiple depths in Midwest Brazil, Remote Sens., 11, 2905, 10.3390/rs11242905 Ramcharan, 2018, Soil property and class maps of the conterminous United States at 100-meter spatial resolution, Soil Sci. Soc. Am. J., 82, 186, 10.2136/sssaj2017.04.0122 Saïdou, 2018, Fertilizer recommendations for maize production in the South Sudan and Sudano-Guinean zones of Benin, improving the profitability, sustainability and efficiency of nutrients through site specific fertilizer recommendations in West Africa agro-ecosystems, Springer, 215 Saiz, 2012, Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa, Glob. Chang. Biol., 18, 1670, 10.1111/j.1365-2486.2012.02657.x Shahbazi, 2019, Evaluating the spatial and vertical distribution of agriculturally important nutrients—nitrogen, phosphorous and boron—in North West Iran, Catena, 173, 71, 10.1016/j.catena.2018.10.005 Silatsa, 2020, Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon, Geoderma, 367, 10.1016/j.geoderma.2020.114260 Solomatine, 2009, A novel method to estimate model uncertainty using machine learning techniques, Water Resour. Res., 45, 10.1029/2008WR006839 Somarathna, 2016, Mapping soil organic carbon content over New South Wales, Australia using local regression kriging, Geoderma Reg., 7, 38, 10.1016/j.geodrs.2015.12.002 Sonneveld, 2012, The impact of climate change on crop production in west Africa: an assessment for the oueme river basin in Benin, Water Resour. Manag., 26, 553, 10.1007/s11269-011-9931-x Sulaeman, 2012, Soil-landscape models to predict soil pH variation in the Subang region of West Java, Indonesia, 317 Sys, 1976, Principes de classification et d’evaluation des terres pour la Republique Populaire du Benin, Rapport de la mission de Szatmári, 2019, Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms, Geoderma, 337, 1329, 10.1016/j.geoderma.2018.09.008 Taghizadeh-Mehrjardi, 2014, Digital mapping of soil salinity in Ardakan region, central Iran, Geoderma, 213, 15, 10.1016/j.geoderma.2013.07.020 UN Vasenev, 2018 Vaysse, 2017, Using quantile regression forest to estimate uncertainty of digital soil mapping products, Geoderma, 291, 55, 10.1016/j.geoderma.2016.12.017 Volkoff, 1976 Walkley, 1934, An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., 37, 29, 10.1097/00010694-193401000-00003 Wilson, 2017, Multi-decadal time series of remotely sensed vegetation improves prediction of soil carbon in a subtropical grassland, Ecol. Appl., 27, 1646, 10.1002/eap.1557 Wubie, 2020, Effects of land cover changes and slope gradient on soil quality in the Gumara watershed, Lake Tana basin of North–West Ethiopia, Modeling Earth Syst. Environ., 6, 85, 10.1007/s40808-019-00660-5 Yigini, 2018 Zeraatpisheh, 2019, Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran, Geoderma, 338, 445, 10.1016/j.geoderma.2018.09.006