Assessment of the potential hazard of nano-scale TiO2 in photocatalytic cement: application of a tiered assessment framework
Tài liệu tham khảo
Alina, 2016, Application of titanium dioxide in cement and concrete technology, Key Eng. Mater., 4, 687
Al-Kattan, 2013, Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering, Environ. Sci.: Processes Impacts, 15, 2186
Ângelo, 2013, An overview of photocatalysis phenomena applied to NOX abatement, J. Environ. Manag., 129, 522, 10.1016/j.jenvman.2013.08.006
Bai, 2014, Titanium dioxide nanomaterials for sensor applications, Chem. Rev., 12, 10131, 10.1021/cr400625j
Bar-Ilan, 2013, TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations, Environ. Sci. Technol., 47, 4726, 10.1021/es304514r
Blankendaal, 2014, Reducing the environmental impact of concrete and asphalt: a scenario approach, J. Clean. Prod., 66, 27, 10.1016/j.jclepro.2013.10.012
Boonen, 2014, Recent photocatalytic applications for air purification in Belgium, Coatings, 4, 553, 10.3390/coatings4030553
Bossa, 2017, Environmental exposure to TiO2 nanomaterials incorporated in building material, Environ. Pollut., 220, 1160, 10.1016/j.envpol.2016.11.019
Brame, 2013, Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico, Chemosphere, 90, 2315, 10.1016/j.chemosphere.2012.10.009
Coleman, 2015
Collier, 2015, Tiered guidance for risk-informed environmental health and safety testing of nanotechnologies, J. Nanopart. Res., 17, 155, 10.1007/s11051-015-2943-3
Diamond, 2009
Dolatabadi, 2013
U.S. EPA, 2002
EU Commission, 2011, Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU), Off. J. Eur. Communities
Folli, 2012, TiO2 photocatalysis in cementitious systems: insights into self-cleaning and depollution chemistry, Cem. Concr. Res., 2012, 539, 10.1016/j.cemconres.2011.12.001
Froggett, 2014, A review and perspective of existing research on the release of nanomaterials from solid nanocomposites, Part. Fibre Toxicol., 11, 17, 10.1186/1743-8977-11-17
Guo, 2015, Photocatalytic activities of titanium dioxide incorporated architectural mortars: effects of weathering and activation light, Build. Environ., 94, 395, 10.1016/j.buildenv.2015.08.027
Hansen, 2007, Categorization framework to aid hazard identification of nanomaterials, Nanotoxicology, 1, 243, 10.1080/17435390701727509
Hansen, 2008, Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles, Ecotoxicology, 17, 438, 10.1007/s10646-008-0210-4
Harmon, 2014, Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium, Environ. Toxicol. Chem., 33, 1783, 10.1002/etc.2616
Hashimoto, 2005, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., 44, 8269, 10.1143/JJAP.44.8269
Hassan, 2010, Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement, Constr. Build. Mater., 24, 1456, 10.1016/j.conbuildmat.2010.01.009
Hirth, 2013, Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials, J. Nanopart. Res., 15, 1504, 10.1007/s11051-013-1504-x
Jafari, 2016, Improved photodegradation of organic contaminants using nano-TiO2 and TiO2–SiO2 deposited on Portland cement concrete blocks, Photochem. Photobiol., 92, 87, 10.1111/php.12554
Kaegi, 2008, Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment, Environ. Pollut., 156, 233, 10.1016/j.envpol.2008.08.004
Kennedy, 2017, Assessing nanomaterial exposures in aquatic ecotoxicological testing: framework and case studies based on dispersion and dissolution, Nanotoxicology, 11, 546, 10.1080/17435390.2017.1317863
Kreyling, 2010, A complementary definition of nanomaterial, Nano Today, 5, 165, 10.1016/j.nantod.2010.03.004
Kwon, 2008, Photocatalytic applications of micro-and nano-TiO2 in environmental engineering, Crit. Rev. Environ. Sci. Technol., 38, 197, 10.1080/10643380701628933
Lee, 2010, Influence of TiO2 nanoparticles on early C3S hydration, J. Am. Ceram. Soc., 93, 3399, 10.1111/j.1551-2916.2010.03868.x
Li, 2014, Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod: are benthic systems at risk?, Sci. Total Environ., 466, 800, 10.1016/j.scitotenv.2013.07.059
Li, 2015, Modeling TiO2 nanoparticle phototoxicity: the importance of chemical concentration, ultraviolet radiation intensity, and time, Environ. Pollut., 205, 327, 10.1016/j.envpol.2015.06.020
Ma, 2012, Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka, Environ. Toxicol. Chem., 31, 1621, 10.1002/etc.1858
Ma, 2014, Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution, Environ. Pollut., 193, 165, 10.1016/j.envpol.2014.06.027
Martin, 2016, Nanosilver conductive ink: a case study for evaluating the potential risk of nanotechnology under hypothetical use scenarios, Chemosphere, 162, 222, 10.1016/j.chemosphere.2016.07.082
Mitrano, 2015, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environ. Int., 77, 132, 10.1016/j.envint.2015.01.013
Nowack, 2012, Potential scenarios for nanomaterial release and subsequent alteration in the environment, Environ. Toxicol. Chem., 31, 50, 10.1002/etc.726
Petersen, 2015, Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations, Environ. Sci. Technol., 49, 9532, 10.1021/acs.est.5b00997
Piccinno, 2012, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, J. Nanopart. Res., 14, 1109, 10.1007/s11051-012-1109-9
Robichaud, 2009, Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment, Environ. Sci. Technol., 43, 4227, 10.1021/es8032549
Schneider, 2014, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892
Seto, 2015
Simpson, 2003, Effect of declining toxicant concentrations on algal bioassay endpoints, Environ. Toxicol. Chem., 22, 2073, 10.1897/02-418
Spasiano, 2015, Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach, Appl. Catal. B Environ., 170, 90, 10.1016/j.apcatb.2014.12.050
Subramanian, 2014, Sustainable nanotechnology: defining, measuring and teaching, Nano Today, 9, 6, 10.1016/j.nantod.2014.01.001
Tejamaya, 2012, Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media, Environ. Sci. Technol., 46, 7011, 10.1021/es2038596
Weinstein, 2006, Relating daily solar ultraviolet radiation dose in salt marsh-associated estuarine systems to laboratory assessments of photoactivated polycyclic aromatic hydrocarbon toxicity, Environ. Toxicol. Chem., 25, 2860, 10.1897/06-034R.1
Weir, 2012, Titanium dioxide nanoparticles in food and personal care products, Environ. Sci. Technol., 46, 2242, 10.1021/es204168d
Wohlleben, 2016, Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial, NanoImpact, 1, 39, 10.1016/j.impact.2016.01.001
Wohlleben, 2011, On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites, Small, 7, 2384, 10.1002/smll.201002054