Assessment of the potential hazard of nano-scale TiO2 in photocatalytic cement: application of a tiered assessment framework

NanoImpact - Tập 8 - Trang 11-19 - 2017
Stephen A. Diamond1, Alan J. Kennedy2, Nicholas L. Melby2, Robert D. Moser3, A.R. Poda2, C.A. Weiss3, J.A. Brame2
1NanoSafe, Inc., Steve Diamond 3808, East Superior Street Duluth, MN 55804, USA
2US Army Engineer Research & Development Center, Environmental Laboratory 3909, Halls Ferry Rd., Vicksburg, MS 39180, USA
3US Army Engineer Research & Development Center, Geotechnical & Structures Laboratory 3909, Halls Ferry Rd., Vicksburg, MS 39180, USA

Tài liệu tham khảo

Alina, 2016, Application of titanium dioxide in cement and concrete technology, Key Eng. Mater., 4, 687 Al-Kattan, 2013, Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering, Environ. Sci.: Processes Impacts, 15, 2186 Ângelo, 2013, An overview of photocatalysis phenomena applied to NOX abatement, J. Environ. Manag., 129, 522, 10.1016/j.jenvman.2013.08.006 Bai, 2014, Titanium dioxide nanomaterials for sensor applications, Chem. Rev., 12, 10131, 10.1021/cr400625j Bar-Ilan, 2013, TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations, Environ. Sci. Technol., 47, 4726, 10.1021/es304514r Blankendaal, 2014, Reducing the environmental impact of concrete and asphalt: a scenario approach, J. Clean. Prod., 66, 27, 10.1016/j.jclepro.2013.10.012 Boonen, 2014, Recent photocatalytic applications for air purification in Belgium, Coatings, 4, 553, 10.3390/coatings4030553 Bossa, 2017, Environmental exposure to TiO2 nanomaterials incorporated in building material, Environ. Pollut., 220, 1160, 10.1016/j.envpol.2016.11.019 Brame, 2013, Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico, Chemosphere, 90, 2315, 10.1016/j.chemosphere.2012.10.009 Coleman, 2015 Collier, 2015, Tiered guidance for risk-informed environmental health and safety testing of nanotechnologies, J. Nanopart. Res., 17, 155, 10.1007/s11051-015-2943-3 Diamond, 2009 Dolatabadi, 2013 U.S. EPA, 2002 EU Commission, 2011, Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU), Off. J. Eur. Communities Folli, 2012, TiO2 photocatalysis in cementitious systems: insights into self-cleaning and depollution chemistry, Cem. Concr. Res., 2012, 539, 10.1016/j.cemconres.2011.12.001 Froggett, 2014, A review and perspective of existing research on the release of nanomaterials from solid nanocomposites, Part. Fibre Toxicol., 11, 17, 10.1186/1743-8977-11-17 Guo, 2015, Photocatalytic activities of titanium dioxide incorporated architectural mortars: effects of weathering and activation light, Build. Environ., 94, 395, 10.1016/j.buildenv.2015.08.027 Hansen, 2007, Categorization framework to aid hazard identification of nanomaterials, Nanotoxicology, 1, 243, 10.1080/17435390701727509 Hansen, 2008, Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles, Ecotoxicology, 17, 438, 10.1007/s10646-008-0210-4 Harmon, 2014, Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium, Environ. Toxicol. Chem., 33, 1783, 10.1002/etc.2616 Hashimoto, 2005, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., 44, 8269, 10.1143/JJAP.44.8269 Hassan, 2010, Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement, Constr. Build. Mater., 24, 1456, 10.1016/j.conbuildmat.2010.01.009 Hirth, 2013, Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials, J. Nanopart. Res., 15, 1504, 10.1007/s11051-013-1504-x Jafari, 2016, Improved photodegradation of organic contaminants using nano-TiO2 and TiO2–SiO2 deposited on Portland cement concrete blocks, Photochem. Photobiol., 92, 87, 10.1111/php.12554 Kaegi, 2008, Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment, Environ. Pollut., 156, 233, 10.1016/j.envpol.2008.08.004 Kennedy, 2017, Assessing nanomaterial exposures in aquatic ecotoxicological testing: framework and case studies based on dispersion and dissolution, Nanotoxicology, 11, 546, 10.1080/17435390.2017.1317863 Kreyling, 2010, A complementary definition of nanomaterial, Nano Today, 5, 165, 10.1016/j.nantod.2010.03.004 Kwon, 2008, Photocatalytic applications of micro-and nano-TiO2 in environmental engineering, Crit. Rev. Environ. Sci. Technol., 38, 197, 10.1080/10643380701628933 Lee, 2010, Influence of TiO2 nanoparticles on early C3S hydration, J. Am. Ceram. Soc., 93, 3399, 10.1111/j.1551-2916.2010.03868.x Li, 2014, Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod: are benthic systems at risk?, Sci. Total Environ., 466, 800, 10.1016/j.scitotenv.2013.07.059 Li, 2015, Modeling TiO2 nanoparticle phototoxicity: the importance of chemical concentration, ultraviolet radiation intensity, and time, Environ. Pollut., 205, 327, 10.1016/j.envpol.2015.06.020 Ma, 2012, Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka, Environ. Toxicol. Chem., 31, 1621, 10.1002/etc.1858 Ma, 2014, Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution, Environ. Pollut., 193, 165, 10.1016/j.envpol.2014.06.027 Martin, 2016, Nanosilver conductive ink: a case study for evaluating the potential risk of nanotechnology under hypothetical use scenarios, Chemosphere, 162, 222, 10.1016/j.chemosphere.2016.07.082 Mitrano, 2015, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environ. Int., 77, 132, 10.1016/j.envint.2015.01.013 Nowack, 2012, Potential scenarios for nanomaterial release and subsequent alteration in the environment, Environ. Toxicol. Chem., 31, 50, 10.1002/etc.726 Petersen, 2015, Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations, Environ. Sci. Technol., 49, 9532, 10.1021/acs.est.5b00997 Piccinno, 2012, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, J. Nanopart. Res., 14, 1109, 10.1007/s11051-012-1109-9 Robichaud, 2009, Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment, Environ. Sci. Technol., 43, 4227, 10.1021/es8032549 Schneider, 2014, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892 Seto, 2015 Simpson, 2003, Effect of declining toxicant concentrations on algal bioassay endpoints, Environ. Toxicol. Chem., 22, 2073, 10.1897/02-418 Spasiano, 2015, Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach, Appl. Catal. B Environ., 170, 90, 10.1016/j.apcatb.2014.12.050 Subramanian, 2014, Sustainable nanotechnology: defining, measuring and teaching, Nano Today, 9, 6, 10.1016/j.nantod.2014.01.001 Tejamaya, 2012, Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media, Environ. Sci. Technol., 46, 7011, 10.1021/es2038596 Weinstein, 2006, Relating daily solar ultraviolet radiation dose in salt marsh-associated estuarine systems to laboratory assessments of photoactivated polycyclic aromatic hydrocarbon toxicity, Environ. Toxicol. Chem., 25, 2860, 10.1897/06-034R.1 Weir, 2012, Titanium dioxide nanoparticles in food and personal care products, Environ. Sci. Technol., 46, 2242, 10.1021/es204168d Wohlleben, 2016, Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial, NanoImpact, 1, 39, 10.1016/j.impact.2016.01.001 Wohlleben, 2011, On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites, Small, 7, 2384, 10.1002/smll.201002054