Đánh giá các đặc tính chống oxy hóa và kháng khuẩn của tảo đỏ (Rhodophyta) từ bờ biển phía Bắc Tunisia

Springer Science and Business Media LLC - Tập 6 - Trang 1-9 - 2021
Imen Hmani1, Leila Ktari1, Amel Ismail1, Cheima M’dallel1, Monia El Bour1
1INSTM, Carthage University, Salammbô, Tunisia

Tóm tắt

Tảo đỏ là một nguồn phong phú các hợp chất có nhiều tính chất sinh học hoạt động, chẳng hạn như tính chất kháng khuẩn, chống oxy hóa, chống bám dính, chống phân bào và chống ung thư. Trong nghiên cứu này, các đặc tính chống oxy hóa và kháng khuẩn của mười hai loài tảo đỏ được thu thập từ bờ biển Tunisia đã được xem xét. Hàm lượng phenolic, flavonoid và tannin tổng số ước tính trong các chiết xuất methanolic được phát hiện có sự khác biệt giữa các loài. Gracilaria gracilis cho thấy nồng độ cao nhất của các hợp chất phenolic tổng số (19,2 ± 1,88 mg GAE/g sinh khối khô), Laurencia obtusa cho thấy hàm lượng tannin cao nhất (18,95 ± 0,84 mg ECat/g DB), và Sphaerococcus cornopifolius cho thấy hàm lượng flavonoid cao nhất (7,17 ± 0 mg ECat/g DB). Sáu loài cho thấy hoạt động quét gốc tự do DPPH đáng kể và khả năng chống oxy hóa tổng thể: Asparagopsis armata, Gracilaria gracilis, Hypnea musciformis, Laurencia obtusa, Pterocladiella capillacea, và Sphaerococcus cornopifolius. Hoạt động kháng khuẩn đã được quan sát thấy ở năm loài. Nghiên cứu này do đó nhấn mạnh khả năng sử dụng các loài tảo đỏ được thu thập từ bờ biển Tunisia như là những nguồn cung cấp hợp chất sinh học hoạt động.

Từ khóa

#tảo đỏ #Rhodophyta #đặc tính chống oxy hóa #đặc tính kháng khuẩn #hợp chất sinh học hoạt động #bờ biển Tunisia

Tài liệu tham khảo

Al-Enazi NM, Awaad AS, Alqasoumi SI, Alwethairi MF (2018) Biological activities of the red algae Galaxaura rugosa and Liagora hawaiiana butters. Saudi Pharmaceutical J 26:25–32 Alencar DB, Diniz JC, Rocha SAS, Pires-Cavalcante KMS, Lima RL, Sousa KC, Freitas JO, Bezerra RM, Baracho BM, Sampaio AH, Viana FA, Saker-Sampaio S (2018) Fatty acid composition from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991 and its antioxidant activity. An Acad Bras Cienc. 90(1):449–459 Ben Maiz N (1995) Étude nationale sur la diversité biologique de la flore marine et aquatique en Tunisie. Projet de coopération: MEAT/PNUE/GEF. Minister de l’Environment, Tunis Ben Said R, Mensi F, Majdoub H, Ben Said A, Ben Said B, Bouraoui A (2018) Effects of depth and initial fragment weights of Gracilaria gracilis on the growth, agar yield, quality and biochemical composition. J Appl Phycol 30(4):2499–2512 Bouhlal R, Riadi H, Martínez J, Bourgougnon N (2012) The antibacterial potential of the algae (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean coast of Morocco. Afr J Biotech 9(38):6365–6372 Bouhlal R, Riadi H, Bourgougnon N (2013) Antioxidant activity of Rhodophyceae extracts from Atlantic and Mediterranean coasts of Morocco. Afr J Plant Sci 7(3):110–117 Buschmann A, Camus C, Infante RJ, Neori A, Israel A, Hernández-González M, Pereda S, Gomez Pinchetti JL, Golberg A, Tadmor Shalev N, Critchley A (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52:391–406 Cabioch J, Floch Y, Le Toquin A, Boudouresque CF, Meinesz A, Verlaque M (2006) Guide des algues des mers d’Europe. Delachaux et Niestlé, Paris Chakraborty K, Joseph D, Joy M, Raola VK (2015) Characterization of substituted aryl meroterpenoids from red seaweed Hypnea musciformis as potential antioxidants. Food Chem 212:778–788 Chebil Ajjabi L, Abaab M, Segni R (2018) The red macroalga Gracilaria gracilis in co-culture with the Mediterranean mussels Mytilus galloprovincialis: productivity and nutrient removal performance. Aquacult Int 26:253–266 Creis E, Gall EA, Potin P (2018) Ubiquitous phlorotannins prospects and perspectives. In: La Barre S, Bates SS (eds) Blue biotechnology: production and use of marine molecules. Wiley VCH, Weinheim, pp 67–116 Dellai A, Laajili S, Le Morvan V, Robert J, Bouraoui A (2013) Antiproliferative activity and phenolics of the Mediterranean seaweed Laurencia obtusa. Ind Crops Prod 47:252–255 Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50(10):3010–3014 El Kassas HY, Attia AA (2014) Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red algae Pterocladiella capillacea on the HepG2 cell line. Asian Pac J Cancer Prev 15(3):1299–1306 FAO (2018) The global status of seaweed production, trade and utilization. Globe Fish Res Program 124:120 Farasat M, Khavari-Nejad RA, Bagher Navari SM, Namjooyan F (2013) Antioxidant properties of two edible green seaweeds from northern coasts of the Persian Gulf. Iran J Pharm Res 13(1):163–170 Fellah F, Louaileche H, Dehbi-Zebboudj A, Touati N (2017) Seasonal variations in the phenolic compound content and antioxidant activities of three selected species of seaweeds from Tiskerth islet, Bejaia. Algeria J Mater Environ Sci 8(12):4451–4456 Fernando IPS, Ryu B, Ahn G, Yeo I-K, Jeon Y-J (2020) Therapeutic potential of algal natural products against metabolic syndrome: a review of recent developments. Trends Food Sci Technol 97:286–299 Fischer W, Bauchot ML, Schneider M (1987) Fiches FAO d’identification des espèces pour les besoins de la pêche, révision 1. Méditerranée et mer Noire. Zone de pêche 37. Volume I. Végétaux et Invertébrés. FAO, Rome, 1:760 Gamze Y, Egemen D, Sukran D (2014) Comparison of the antioxidative components of some marine macroalgae from Turkey. Pak J Bot 46(2):753–757 Gupta S, Abu-Ghannam N (2011) Bioactive potential and possible health effects of edible brown seaweeds. Tre Food Sci Technol 22:315–326 Hellio C, Broise D, Dufossé L, Gal Y, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Marine Environ Res 52:231–247 Heo SJ, Cha SH, Lee KW, Jeon YJ (2006) Antioxidant activities of red algae from jeju island. Algae 21(1):149–156 Ismail GA (2017) Biochemical composition of some Egyptian seaweeds with potent nutritive and antioxidant properties. Food Sci Technol Campinas 37(2):294–302 Ismail A, Ktari L, Ahmed M, Bolhuis H, Boudabbous A, Stal LJ, Cretoiu MS, El Bour M (2016) Antimicrobial Activities of bacteria associated with the brown alga padina pavonica. Front Microbiol 7 Kolanjinathan K, Ganesh P, Saranraj P (2014) Pharmacological importance of seaweeds: a review. World J Fish Marine Sci 6(1):01–15 Kumar PS, Mubarak AD, Saratale RG, Saratale GD, Pugazhendhi A, Gopalakrishnan K, Thajuddin N (2017) Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens. Microb Pathog 113:68–73 Lavanya B, Narayanan N, Maheshwaran A (2016) Pharmacological studies on Hypnea musciformis (Wulfen) Lamouroux. IJARIIT 2(4) Mohy El-Din SM, El-Ahwany AMD (2016) Bioactivity and phytochemical constituents of marine red algae (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci 10:471–484 Neethu PV, Suthindhiran K, Jayasri MA (2017) Antioxidant and antiproliferative activity of Asparagopsis taxiformis. Phcog Res 9(3):238–246 Pangestuti R, Kim SK (2011) Neuroprotective effects of marine algae. Mar Drugs 9(5):803–818 Pinteus S, Alves C, Monteiro H, Araujo E, Horta A, Pedrosa R (2015) Asparagopsis armata and Sphaerococcus coronopifolius as a natural source of antimicrobial compounds. World J Microbiol Biotechnol 31(3):445–451 Pinteus S, Rodrigues AN, Silva J, Lokman C, Lemos MF, Pedrosa R (2016) The marine invasive Asparagopsis armata (Harvey, 1855) as source of bioactive valuable compounds—antioxidant potential enrichment by vacuum liquid chromatography. In: International Meeting on Marine Research (IMMR’18), Peniche, Portugal, 5–6 July 2018. https://doi.org/10.3389/conf.FMARS.2016.04.00067 Price ML, Van Scoyoc S, Butler LG (1978) A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J Agric Food Chem 26:1214–1218 Prieto P, Pineda M, Anguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341 Rico M, López A, Tangil MS, Rivero A (2012) Phenolic profile of crude extracts derived from a red alga, Corallina elongata Ellis & Solander. In: Krueger D, Meyer H (eds) Algae. Nova Science, New York, pp 135–144 Rodrigues D, Alves C, Horta A, Pinteus S, Silva J, Culioli G, Thomas OP, Pedrosa R (2015) Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga Sphaerococcus coronopifolius. Mar Drugs 13:713–726 Rozo G, Rozo C, Puyana M, Ramos FA, Almonacid C, Castro H (2019) Two compounds of the Colombian algae Hypnea musciformis prevent oxidative damage in human low density lipoproteins LDLs. J Functional Foods 60:103399 Sarojini Y, Laakshminarayana K, Seshagiri P (2012) Varation in distribution of flavonoids in some seaweed of Visakhapatnam coast of India. Der Pharma Chem 4(4):1481–1484 Shanab SMM (2007) Antioxidant and antibiotic activities of some algae (Egyptian isolates). Int J Agri Biol 9(2):220–225 Smyrniotopoulos V, Quesada A, Vagias C, Moreau D, Roussakis C, Roussis V (2008) Cytotoxic bromoditerpenes from the red alga Sphaerococcus coronopifolius. Tetrahedron 64(22):5184–5190 Wei Y, Li Z, Hu Y, Xu Z (2003) Inhibition of mouse liver lipid peroxidation by high molecular weight phlorotannins from Sargassum kjellmanianum. J Appl Phycol 15:507–511 Widowati I, Lubac D, Puspita M, Bourgougnon N (2014) Antibacterial and antioxidant properties of the red alga Gracilaria gracilis from the north coast of Tava, Semarang, Indonesia. Int J Latest Res Sci Technol 3(3):179–185 Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y (2019) The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int 8(2019):9732325 Xiulan X, He Z, Chen N, Tang Z, Wang Q, Cai Y (2019) The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int 8:9732325 Yalcinkaya T, Uzilday B, Ozgur R, Turkan I, Mano J (2019) Lipid peroxidation-derived reactive carbonyl species (RCS): their interaction with ROS and cellular redox during environmental stresses. Environ Exp Bot 165:139–149 Zubia M, Fabre MS, Kerjean V, Deslandes E (2009) Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar 52:268–277