Assessment of the agreement between the Framingham and DAD risk equations for estimating cardiovascular risk in adult Africans living with HIV infection: a cross-sectional study
Tóm tắt
The Absolute cardiovascular disease (CVD) risk evaluation using multivariable CVD risk models is increasingly advocated in people with HIV, in whom existing models remain largely untested. We assessed the agreement between the general population derived Framingham CVD risk equation and the HIV-specific Data collection on Adverse effects of anti-HIV Drugs (DAD) CVD risk equation in HIV-infected adult Cameroonians. This cross-sectional study involved 452 HIV infected adults recruited at the HIV day-care unit of the Yaoundé Central Hospital, Cameroon. The 5-year projected CVD risk was estimated for each participant using the DAD and Framingham CVD risk equations. Agreement between estimates from these equations was assessed using the spearman correlation and Cohen’s kappa coefficient. The mean age of participants (80% females) was 44.4 ± 9.8 years. Most participants (88.5%) were on antiretroviral treatment with 93.3% of them receiving first-line regimen. The most frequent cardiovascular risk factors were abdominal obesity (43.1%) and dyslipidemia (33.8%). The median estimated 5-year CVD risk was 0.6% (25th-75th percentiles: 0.3-1.3) using the DAD equation and 0.7% (0.2-2.0) with the Framingham equation. The Spearman correlation between the two estimates was 0.93 (p < 0.001). The kappa statistic was 0.61 (95% confident interval: 0.54-0.67) for the agreement between the two equations in classifying participants across risk categories defined as low, moderate, high and very high. Most participants had a low-to-moderate estimated CVD risk, with acceptable level of agreement between the general and HIV-specific equations in ranking CVD risk.
Tài liệu tham khảo
Fact sheet 2015. [cited 2016 Mar 27]. Available from: http://www.unaids.org/en/resources/campaigns/HowAIDSchangedeverything/factsheet
Nery MW, Martelli CMT, Aparecida Silveira E, de Sousa CA, Falco M de O, de Castro A de CO, et al. Cardiovascular Risk Assessment: A Comparison of the Framingham, PROCAM, and DAD Equations in HIV-Infected Persons. Sci World J. 2013. [cited 2016 Apr 9] Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819022/
Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92(7):2506–12.
Boccara F, Meuleman C, Ederhy S, Dufaitre G, Douna F, Lang S, et al. Atteinte cardiovasculaire au cours de l’infection par le VIH. EMC - Cardiol. 2009;4(1):1–7. [cited 2015 Jul 23] Available from: http://www.em-consulte.com/en/article/201119.
Bergersen BM, Sandvik L, Bruun JN, Tonstad S. Elevated Framingham risk score in HIV-positive patients on highly active antiretroviral therapy: results from a Norwegian study of 721 subjects. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2004;23(8):625–30.
World Health Organization (WHO) and International Society of… : Journal of Hypertension. LWW. [cited 2015 Jul 23] Available from: http://journals.lww.com/jhypertension/Fulltext/2007/08000/World_Health_Organization__WHO__and_International.9.aspx
Friis-Møller N, Thiébaut R, Reiss P, Weber R, Monforte AD, De Wit S, et al. Predicting the risk of cardiovascular disease in HIV-infected patients: the data collection on adverse effects of anti-HIV drugs study. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Groups Epidemiol Prev Card Rehabil Exerc Physiol. 2010;17(5):491–501.
Friis-Møller N, Weber R, Reiss P, Thiébaut R, Kirk O, d’Arminio Monforte A, et al. Cardiovascular disease risk factors in HIV patients--association with antiretroviral therapy. Results from the DAD study. AIDS Lond Engl. 2003;17(8):1179–93.
Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i–xii, 1–253.
IDF Worldwide Definition of the Metabolic Syndrome | International Diabetes Federation. [cited 2016 Feb 28]. Available from: http://www.idf.org/metabolic-syndrome
1999 World Health Organization-International Society of Hypertension Guidelines for the Management of Hypertension. Guidelines Subcommittee. J Hypertens. 1999;17(2):151–83.
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.
WHO | Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. WHO. [cited 2016 Feb 28]. Available from: http://www.who.int/diabetes/publications/diagnosis_diabetes2006/en/
Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. Am Heart J. 1991;121(1 Pt 2):293–8.
Edward AO, Oladayo AA, Omolola AS, Adetiloye AA, Adedayo PA. Prevalence of traditional cardiovascular risk factors and evaluation of cardiovascular risk using three risk equations in nigerians living with human immunodeficiency virus. North Am J Med Sci. 2013;5(12):680–8.
Pancha Mbouemboue O, Derew D, Tsougmo JON, Tangyi TM. A community-based assessment of hypertension and some other cardiovascular disease risk factors in Ngaoundéré, Cameroon. Int J Hypertens. 2016;2016:4754636.
Ama Moor VJ, Ndongo Amougou S, Ombotto S, Ntone F, Wouamba DE, Ngo NB. Dyslipidemia in patients with a cardiovascular risk and disease at the University Teaching Hospital of Yaoundé, Cameroon. Int J Vasc Med. 2017;2017:6061306.
Julius H, Basu D, Ricci E, Wing J, Basu JK, Pocaterra D, et al. The burden of metabolic diseases amongst HIV positive patients on HAART attending the Johannesburg Hospital. Curr HIV Res. 2011;9(4):247–52.
Menanga AP, Ngomseu CK, Jingi AM, Mfangam BM, Noubiap JJN, Gweth MN, et al. Patterns of cardiovascular disease in a group of HIV-infected adults in Yaoundé, Cameroon. Cardiovasc Diagn Ther. 2015;5(6):420–7.
Mashinya F, Alberts M, Van Geertruyden J-P, Colebunders R. Assessment of cardiovascular risk factors in people with HIV infection treated with ART in rural South Africa: a cross sectional study. AIDS Res Ther. 2015;12:42.
Pirš M, Jug B, Eržen B, Šabović M, Karner P, Poljak M, et al. Cardiovascular risk assessment in HIV-infected male patients: a comparison of Framingham, SCORE, PROCAM and DAD risk equations. Acta Dermatovenerol Alp Pannonica Adriat. 2014;23(3):43–7.
Serrano-Villar S, Estrada V, Gómez-Garre D, Ávila M, Fuentes-Ferrer M, San RJ, et al. Diagnosis of subclinical atherosclerosis in HIV-infected patients: higher accuracy of the D:a:D risk equation over Framingham and SCORE algorithms. Eur J Prev Cardiol. 2014;21(6):739–48.
Mateen FJ, Kanters S, Kalyesubula R, Mukasa B, Kawuma E, Kengne AP, et al. Hypertension prevalence and Framingham risk score stratification in a large HIV-positive cohort in Uganda. J Hypertens. 2013;31(7):1372–8. discussion 1378
GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet Lond Engl. 2015;385(9963):117–71.