Assessment of platelets morphological changes and serum butyrylcholinesterase activity in children with diabetic ketoacidosis: a case control study
Tóm tắt
Many studies indicated that mean platelet volume (MPV) and platelet distribution width (PDW) may be valuable in the diagnosis and management of clinical disorders; also, serum butyrylcholinesterase activity (BChE) was suggested to be linked to systemic inflammation and oxidative stress. Limited studies measured these readily available markers in children with diabetic ketoacidosis (DKA). Our objectives were to measure MPV, PDW and BChE in children with DKA; and to assess if any of these markers reflects the severity of DKA. Our study included: 30 children with DKA (DKA group), 30 diabetic children (Non-DKA group) and 30 apparently healthy children (control group). MPV, PDW and BChE were measured in all children. Additional blood samples were withdrawn from the DKA group to assess these markers at discharge from hospital. MPV, PDW and BChE were significantly altered in the DKA group than the other two groups; and their levels improved significantly at discharge of the DKA group (p < 0.05). The three markers were found to equally to predict the presence of DKA, but MPV was the most suitable risk marker for DKA diagnosis (OR = 4.251, CI 95% =1.463–12.351, p = 0.003). Regarding their relation with DKA severity, they did not correlate significantly with arterial PH or serum HCO3- (p > 0.05). DKA in children is associated with changes in MPV, PDW and BChE activity, which improve after resolution of the condition. Elevated MPV can be a suitable risk marker for DKA. None of the studied markers correlated with the severity of DKA.
Tài liệu tham khảo
Cooke DW, Plotnick L. Management of diabetic ketoacidosis in children and adolescents. Pediatr Rev. 2008;29(12):431–5.
Wolfsdorf JI, Allgrove J, Craig ME, Edge J, Glaser N, Jain V, Lee WWR, Mungai LNW, Rosenbloom AL, Sperling MA, Hanas R. A consensus statement from the international society for pediatric and adolescent diabetes: diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes. 2014;15 Suppl 20:154–79.
Karavanaki K, Karanika E, Georga S, Bartzeliotou A, Tsouvalas M, Konstantopoulos I, Fotinou A, Papassotiriou I, Karayianni C. Cytokine response to diabetic ketoacidosis (DKA) in children with type 1 diabetes (T1DM). Endocr J. 2011;58:1045–53.
Hoffman WH, Stamatovic SM, Andjelkovic AV. Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Res. 2009;1254:138–48.
Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: a link between thrombosis and inflammation? Curr Pharm Des. 2011;17(1):47–58.
Boos CJ, Lip GY. Assessment of mean platelet volume in coronary artery disease - what does it mean? Thromb Res. 2007;120(1):11–3.
Wiwanitkit V. Plateletcrit, mean platelet volume, platelet distribution width: its expected values and correlation with parallel red blood cell parameters. Clin Appl Thromb Hemost. 2004;10(2):175–8.
Miller RD. Miller’s Anesthesia. 6th ed. Philadelphia: Elsevier/Churchill Livingstone; 2005. p. 487–8.
Mourad TA. Adverse impact of insecticidal on the health of Palestinian farm workers in the Gaza strip: A haematologic biomarker study. Int J Occup Environ Health. 2005;11:144–9.
Das UN. Acetylcholinesterase and butyrylcholinesterase as markers of low-grade systemic inflammation. Ann Hepatol. 2012;11(3):409–11.
Omu AE, Al-Azemi MK, Omu FE, Fatinikun T, Abraham S, George S, Mahnazhath N. Butyrylcholinesterase activity in women with diabetes mellitus in pregnancy: Correlation with antioxidant activity. J Obstet Gynaecol. 2010;30:122–6.
Nelson LS, Ford MD. Acute poisoning. In: Goldman L, Schafer AI, editors. Goldman’s Cecil Medicine. 25th ed. Philadelphia: Elsevier Saunders; 2016. chap 110.
Stojanov M, Stefanovic A, Dzingalasevic G, Mandic-Radic S, Prostran M. Butyrylcholinesterase activity in young men and women: Association with cardiovascular risk factors. Clin Biochem. 2011;44:623–6.
National Institute for Health and Care Excellence (NICE). Diabetes (type 1 and type 2) in children and young people: diagnosis and management. NICE guidelines [NG18]. Published date: August 2015. http://www.nice.org.uk/guidance/ng18.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33 Suppl 1:S62–9. doi:10.2337/dc10-S062.
Mattia G, Vulcano F, Milazzo L, Barca A, Macioce G, Giampaolo A, Hassan HJ. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood. 2002;99(3):888–97. Accessed July 12, 2016http://dx.doi.org/10.1182/blood.V99.3.888.
Oncel MY, Ozdemir R, Yurttutan S, Canpolat FE, Erdeve O, Oguz SS, Uras N, Dilmen U. Mean platelet volume in neonatal sepsis. J Clin Lab Anal. 2012;26:493–6.
Artunc Ulkumen B, Pala HG, Calik E, Oruc KS. Platelet distribution width (PDW): A putative marker for threatened preterm labour. Pak J Med Sci. 2014;30:745–78.
Lajer M, Tarnow I, Michelson AD, Jorsal A, Frelinger AL, Parving HH, Rossing P, Tarnow L. Soluble CD40 ligand is elevated in type 1 diabetic nephropathy but not predictive of mortality, cardiovascular events or kidney function. Platelets. 2010;21:525–32.
Yilmaz T, Yilmaz A. Relationship between Altered Platelet Morphological Parameters and Retinopathy in Patients with Type 2 Diabetes Mellitus. Journal of Ophthalmology. vol. 2016, Article ID 9213623, 5 pages, 2016. doi:10.1155/2016/9213623
Ma SG, Yang LX, Qiu XQ. Assessment of the platelet parameters and serum butyrylcholinesterase activity in type 1 diabetes patients with ketoacidosis. Platelets. 2013;24(7):544–8.
Jindal S, Gupta S, Gupta R, Kakkar A, Singh HV, Gupta K, Singh S. Platelet indices in diabetes mellitus: Indicators of diabetic microvascular complications. Hematology. 2011;16:86–9.
Malachowska B, Tomasik B, Szadkowska A, Baranowska-Jazwiecka A, Wegner O, Mlynarski W, Fendler W. Altered Platelets’ morphological parameters in children with type 1 diabetes – a case-control study. BMC Endocr Disord. 2015;15:17. doi:10.1186/s12902-015-0011-8.
Jabeen F, Fawwad A, Rizvi HA, Alvi F. Role of platelet indices, glycemic control and hs-CRP in pathogenesis of vascular complications in type-2 diabetic patients. Pak J Med Sci. 2013;29(1):152–6. doi:10.12669/pjms.291.2592.
Demirtunc R, Duman D, Basar M, Bilgi M, Teomete M, GDemirtunc R, Duman D, Basar M, Bilgi M, Teomete M, Garip T.arip T. The relationship between glycemic control and platelet activity in type 2 diabetes mellitus. J Diabetes Complications. 2009;23(2):89-94.
Hubbard RE, O’Mahony MS, Calver BL, Woodhouse KW. Plasma esterases and inflammation in ageing and frailty. Eur J Clin Pharmacol. 2008;64(9):895–900.
Erbagci AB, Tarakcioglu M, Coskun Y, Sivasli E, Sibel NE. Mediators of inflammation in children with type I diabetes mellitus: Cytokines in type I diabetic children. Clin Biochem. 2001;34:645–50.
Sun Q, Li J, Gao F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J Diabetes. 2014;5(2):89–96. doi:10.4239/wjd.v5.i2.89.
Tagliari B, dos Santos TM, Cunha AA, Lima DD, Delwing D, Sitta A, Vargas CR, Dalmaz C, Wyse AT. Chronic variable stress induces oxidative stress and decreases butyrylcholinesterase activity in blood of rats. J Neural Transm (Vienna). 2010;117(9):1067–76. doi:10.1007/s00702-010-0445-0.
Karaman H, Karakukcu C, Kocer D. Can mean platelet volume serve as a marker for prostatitis? Int J Med Sci. 2013;10(10):1387–91.
Cooke J, Murphy T, McFadden E, O’Reilly M, Cahill MR. Can mean platelet component be used as an index of platelet activity in stable coronary artery disease? Hematology. 2009;14:111–4.
Kakouros N, Rade JJ, Kourliouros A, Resar JR. Platelet function in patients with diabetes mellitus: from a theoretical to a practical perspective. Int J Endocrinol. 2011;2011:742719. doi:10.1155/2011/742719.
de Nadai TR, de Nadai MN, Albuquerque AA, de Carvalho MT, Celotto AC, Evora PR. Metabolic acidosis treatment as part of a strategy to curb inflammation. Int J Inflam. 2013;2013:601424. doi:10.1155/2013/601424.