Đánh giá sự sống sót của cơ tim bằng siêu âm tim hai chiều và chụp cộng hưởng từ

Journal of Nuclear Cardiology - Tập 3 - Trang 167-182 - 1996
Jonathan R. Lindner1, Sanjiv Kaul1
1Cardiovascular Division, University of Virginia Medical Center, Charlottesville

Tóm tắt

Trong một bệnh nhân bị bệnh mạch vành, thông tin lâm sàng, điện tâm đồ và chụp mạch thường không đủ để xác định sự hiện diện của mô có khả năng sống sót. Sự hiện diện của sự dày thành, ngay cả khi giảm, cho thấy cơ tim vẫn còn khả năng sống. Khi không có sự dày thành, cơ tim có thể hoặc không có khả năng sống. Căn nguyên của chức năng cơ tim suy giảm có thể là đa yếu tố trong một bệnh nhân hoặc thậm chí trong một đoạn cơ tim duy nhất. Các kỹ thuật chẩn đoán hình ảnh tim mạch rất hữu ích trong việc xác định cơ chế của chức năng cơ tim suy giảm và hỗ trợ trong việc chọn lựa chiến lược quản lý tối ưu cho bệnh nhân. Bài tổng quan này thảo luận về vai trò của siêu âm tim hai chiều và chụp cộng hưởng từ trong việc đánh giá sự sống sót của cơ tim.

Từ khóa

#bệnh mạch vành #sự sống sót của cơ tim #siêu âm tim hai chiều #chụp cộng hưởng từ #chức năng cơ tim suy giảm

Tài liệu tham khảo

Oxford English dictionary. Oxford: Oxford University Press, 1971. Gropler RJ, Bergmann SR. Myocardial viability: what is the definition. J Nucl Med 1991;32:10–2. Myers JH, Stirling MC, Choy M, Buda AJ, Gallagher KP. Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation 1986;74:164–72. Weintraub WS, Hattori S, Aggarwal JB, Bodenheimer MM, Banka V, Helfant RH. The relationship between myocardial blood flow and contraction by myocardial layer in the canine left ventricle during ischemia. Circ Res 1981;48:430–8. Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thinning to the extent of myocardial infarction in the dog. Circulation 1981;63:739–46. Touchstone DA, Beller GA, Nygaard TW, Tedesco C, Kaul S. Effects of successful intravenous reperfusion therapy on regional myocardial function and geometry in man: a tomographic assessment using two-dimensional echocardiography. J Am Coll Cardiol 1989;13:1506–13. Sklenar J, Villanueva FS, Glasheen WP, Ismail S, Goodman NC, Kaul S. Dobutamine echocardiography for determining the extent of myocardial salvage after reperfusion: an experimental evaluation. Circulation 1994;90:1503–12. Eaton LW, Weiss JL, Bulkley BH, et al. Regional cardiac dilatation after acute myocardial infarction. N Engl J Med 1979;300:57–62. Pirolo JS, Hutchins GM, Moore GW. Infarct expansion: pathologic analysis of 204 patients with a single myocardial infarct. J Am Coll Cardiol 1986;7:349–54. Marino P, Zanolla L, Zardini P. Effect on streptokinase on left ventricular modeling and function after myocardial infarction: the GISSI (Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico) Trial. J Am Coll Cardiol 1989;14:1149–58. Penco M, Romano S, Agati L, et al. Influence of reperfusion induced by thrombolytic treatment on natural history of left ventricular regional motion abnormality in acute myocardial infarction. Am J Cardiol 1993;71:1015–20. Widemsky P, Cervenka V, Visek V, Sladkova T, Dvorak J, Drdlicka S. First month course of left ventricular asynergy after intracoronary thrombolysis in acute myocardial infarction: a longitudinal echocardiographic study. Eur Heart J 1985;6:759–65. Charuzi Y, Beeder C, Marshall LA, et al. Improvement in regional and global left ventricular function after intracoronary thrombolysis: assessment with two-dimensional echocardiography. Am J Cardiol 1984;53:662–5. Villanueva FS, Spotnitz WD, Jayaweera AR, Gimple LW, Dent J, Kaul S. On-line intraoperative quantitation of regional myocardial perfusion during coronary artery bypass graft operations with myocardial contrast two-dimensional echocardiography. J Thorac Cardiovasc Surg 1992;104:1524–31. Stahl LD, Aversano TR, Becker LC. Selective enhancement of function of stunned myocardium by increased flow. Circulation 1986;74:843–51. Becker LC, Levine JH, DiPaula AF, Guarnieri T, Aversano T. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 1986;7:580–9. Bolli R, Zhu W, Myers ML, Hartley CJ, Roberts R. Betaadrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent functional deterioration. Am J Cardiol 1985;56:964–8. Mercier JC, Lando U, Kammatsuse K, et al. Divergent effects of inotropic stimulation on the ischemic and severely depressed reperfused myocardium. Circulation 1982;66:397–400. Ellis SG, Wynne J, Braunwald E, Henschke CI, Sandor T, Kloner RA. Response of reperfusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 1984;107:13–9. Kaul S. Dobutamine echocardiography for determining myocardial viability after reperfusion: experimental and clinical observations. Eur Heart J 1995;16:17–23. Smart SC, Sawada SC, Ryan T, et al. Low-dose dobutamine echocardiography detects reversible dysfunction after throm bolytic therapy of acute myocardial infarction. Circulation 1993; 88:405–15. Senior R, Lahiri A. Enhanced detection of myocardial ischemia by stress dobutamine echocardiography utilizing the “biphasic” response of wall thickening during low and high dose dobutamine infusion. J Am Coll Cardiol 1995;26:26–32. Sklenar J, Camarano G, Ismail S, Goodman N, Kaul S. The effect of coronary stenosis on contractile reserve after acute myocardial infarction: implications in using dobutamine echocardiography for assessing extent of myocardial salvage after reperfusion [Abstract]. Circulation 1994;90(suppl):I-117. Barilla F, Gheorghiade M, Alam M, Khaja F, Goldstein S. Low-dose dobutamine in patients with acute myocardial infarction identifies viable but not contractile myocardium and predicts the magnitude of improvement in wall motion abnormalities in response to coronary revascularization. Am Heart J 1991;122:1522–31. Pierard L, De Landsheere CM, Berthe C, Rigo P, Kulbertus HE. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 1990;15:1021–31. Kaul S. Echocardiography in coronary artery disease. Curr Probl Cardiol 1990;15:235–98. Arai AE, Grauer SE, Anselone CG, Pantley GA, Bristow D. Metabolic adaptation to a gradual reduction in myocardial blood flow. Circulation 1995;92:244–52. Sabia PJ, Powers ER, Jayaweera AR, Ragosta M, Kaul S. Functional significance of collateral blood flow in patients with recent acute myocardial infarction: a study using myocardial contrast echocardiography. Circulation 1992;85:2080–9. Vanoverschelde JJ, Wijns W, Depre C, et al. Mechanisms of chronic regional postischemic dysfunction in humans: new insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993;87:1513–23. Baer FM, Voth E, Deutsch HJ, Schneider CA, Schicha H, Sechtem U. Assessment of viable myocardium by dobutamine transesophageal echocardiography and comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 1994;24:343–53. Perrone-Filardi P, Pace L, Prastaro M, et al. Dobutamine echocardiography predicts improvement of hypoperfused dysfunctional myocardium after revascularization in patients with coronary artery disease. Circulation 1995;92:2556–65. La Canna G, Alfieri O, Giubbibi R, Gargano M, Ferrari R, Visioli O. Echocardiography during infusion of dobutamine for identification of reversible dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol 1994;23:617–26. Cigarroa CC, deFillipi CR, Brickner E, Alvarez LG, Wait MA, Grayburn PA. Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 1993;88: 430–6. van Rugge FP, van der Wall EE, de Roos A, Bruschke AVG. Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J Am Coll Cardiol 1993;22:431–9. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging—a method for the noninvasive assessment of myocardial motion. Radiology 1988; 169:59–63. Lotan CS, Cranney GB, Pohost GM. Cine NMR: an emerging technology. Echocardiography 1988;5:373–82. Utz JA, Herfkens RJ, Heinsimer JA, et al. Cine NMR determination of left ventricular ejection fraction. AJR Am J Roentgenol 1987;148:839–43. Stehling MK, Howseman AM, Ordridge RJ. Whole-body echolanar MR imaging at 0.5T. Radiology 1989;170:257–63. Baer FM, Smolarz K, Jungehulsing M, et al. Feasibility of high dose dipyridamole magnetic resonance imaging for detection of coronary artery disease and comparison with coronary angiography. Am J Cardiol 1992;69:51–6. Pennell DJ, Underwood ST, Manzara CC, et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 1992;70:34–40. Johnston DL, Gupta VK, wendt RE, Mahmarian JJ, Verani MS. Detection of viable myocardium in segments with fixed defects on thallium-201 scintigraphy: usefulness of magnetic resonance imaging early after acute myocardial infarction. Magn Reson Imaging 1993;11:949–56. Baer FM, Smolarz K, Jungehulsing M, et al. Chronic myocardial infarction: assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99m-Tc-methoxy-isobutyl-isonitrile SPECT. Am Heart J 1992;123:636–45. Baer FM, Voth W, Schneider CA, et al. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [F-18]fluorodeoxyglucose in patients with chronic coronary artery disease. Circulation 1995; 91:1006–15. Roberts CS, Maclean D, Maroko P, Kloner RA. Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol 1984;54:407–10. Ryan T, Tarver RD, Duerk JL, et al. Distinguishing viable from infarcted myocardium after experimental ischemia and reperfusion by using nuclear magnetic resonance imaging. J Am Coll Cardiol 1990;15:1355–64. Pflugfelder PW, Wisenberg G, Prato FS, Carroll SE. Serial imaging of canine myocardial infarction by in vivo nuclear magnetic resonance. J Am Coll Cardiol 1986;7:843–9. Tscholakoff D, Higgins CB, McNamara MT, Derugin N. Early-phase myocardial infarction: evaluation by MR imaging. Radiology 1986;159:667–72. Fisher MR, McNamara MT, Higgins CB. Acute myocardial infarction: MR evaluation in 29 patients. AJR Am J Roentgenol 1987;148:247–51. Ahmad M, Johnson RF, Fawcett HD, Schreiber MH. Magnetic resonance imaging in patients with unstable angina: comparison with acute myocardial infarction and normals. Magn Reson Imaging 1988;6:527–34. Ohnishi Y, Butterfield MC, Saffitz JE, Sobel BE, Corr PB, Goldstein JA. Deleterious effects of a systemic lytic state on reperfused myocardium. Circulation 1995;92:500–10. Johnson DL, Brady TJ, Ratner AV, et al. Assessment of myocardial ischemia with proton magnetic resonance: effects of a three hour coronary occlusion with and without reperfusion. Circulation 1985;71:595–601. Forman MB, Puett DW, Virmani R. Endothelial and myocardial injury during ischemia and reperfusion: pathogenesis and therapeutic implications. J Am Coll Cardiol 1989;13:450–9. Krauss XH, van der Wall EE, van der Laarse A, et al. Magnetic resonance imaging of myocardial infarction: correlation with enzymatic, angiographic and radionuclide findings. Am Heart J 1991;122:1274–83. Turnbull LW, Ridgway JP, Nicoll JJ, Bell D, Best JJK. Estimating the size of myocardial infarction by magnetic resonance imaging. Br Heart J 1991;66:359–63. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 1974;54:1496–508. White FC, Sanders M, Bloor CM. Regional redistribution of myocardial blood flow after coronary occlusion and reperfusion in the conscious dog. Am J Cardiol 1978;42:234–43. West PN, Connors JP, Clark RE, et al. Compromised microvascular integrity in ischemic myocardium. Lab Invest 1978;38:677–84. Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis: a predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992;85:1699–705. Ragosta M, Camarano GP, Kaul S, Powers E, Gimple LW. Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction: new insights using myocardial contrast echocardiography. Circulation 1994;89:2562–9. Lim Y-J, Nanto S, Masuyama T, et al. Myocardial salvage: its assessment and prediction by the analysis of serial myocardial contrast echocardiograms in patients with acute myocardial infarction. Am Heart J 1994;128:649–56. Agati L, Voci P, Bilotta F, et al. Influence of residual perfusion within the infarct zone on the natural history of left ventricular dysfunction after acute myocardial infarction: a myocardial contrast echocardiographic study. J Am Coll Cardiol 1994;24:336–42. Villanueva FS, Glasheen WD, Sklenar J, Kaul S. Assessment of risk area during coronary occlusion and infarct size after reperfusion with myocardial contrast echocardiography using left and right atrial injections of contrast. Circulation 1993;88:596–604. Johnson WB, Malone SA, Pantely G, et al. No reflow and extent of infarction during maximal vasodilation in the porcine heart. Circulation 1988;78:462–72. Vanhaecke J, Flameng W, Borgers M, et al. Evidence for decreased coronary flow reserve in viable postischemic myocardium. Circ Res 1990;67:1201–10. Villanueva FS, Glasheen WP, Sklenar J, Kaul S. Characterization of spatial patterns of flow within the reperfused myocardium using myocardial contrast echocardiography: implications for determining extent of myocardial salvage. Circulation 1993;88:2596–606. Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell L, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 1992;327:1825–31. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death, II: transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979;40:633–44. Jugdutt BI, Hutchins GM, Bulkley BM, Becker LC. Myocardial infarction in the conscious dog: three-dimensional mapping of infarct, collateral flow and region at risk. Circulation 1979;60: 1141–50. Kaul S, Kelly P, Oliner JD, Glasheen WP, Keller MW, Watson DD. Assessment of regional myocardial blood flow with myocardial contrast two-dimensional echocardiography. J Am Coll Cardiol 1989;13:468–82. Gensini GG, daCosta BCB. The coronary collateral circulation in living man. Am J Cardiol 1969;24:393–400. Cohen MV. Morphological considerations of the coronary collateral circulation in man. In: Coronary collaterals. New York: Futura Publishing, 1985. deFilippi CR, Willett DL, Irani WN, Eichhorn EJ, Velasco CE, Grayburn PA. Comparison of myocardial contrast echocardiography and low dose dobutamine stress echocardiography in predicting recovery of left ventricular function after coronary revascularization in chronic ischemic heart disease. Circulation 1995;92:2863–8. Vernon SM, Camarano G, Kaul S, Gimple LW, Powers ER, Ragosta M. Regional function distal to a chronically occluded coronary artery correlates with collaterals on myocardial contrast echocardiography and not with angiographic collaterals [Abstract]. Circulation 1995;92(suppl I):659. Camarano GP, Ismail S, Goodman NC, Kaul S. Assessment of risk area during coronary occlusion and infarct size after reperfusion can be determined with myocardial contrast echocardiography using intravenous injections of FS-069, a new contrast agent [Abstract]. Circulation 1994;90(suppl):I-68. Grayburn PA, Erikson JM, Velasco CE. Assessment of myocardial risk area and infarct size by peripheral intravenous injection of a new phase shift echo contrast agent [Abstract]. Circulation 1994; 90(suppl):I-555. Engtelstad BL, Wolf GL. Contrast agents. In: Stark DD, Bradley WG, eds. Magnetic resonance imaging. St. Louis: CV Mosby, 1988:161–81. Strich G, Hagan PL, Berber KH, Slutsky RA. Tissue distribution and magnetic resonance spin lattice relaxation effects of gadolinium-DTPA. Radiology 1985;154:723–6. Weinmann H, Brasch RC, Press W, Wesbey GE. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 1984;142:619–24. Brasch RC, Weinmann H, Wesbey GE. Contrast enhanced NMR imaging: animal studies using gadolinium-DTPA complex. Am J Roentgenol 1984;142:625–30. Schaefer S, Malloy CR, Katz J, et al. Gadolinium-DTPA-enhanced nuclear magnetic resonance imaging of reperfused myocardium: identification of the myocardial bed at risk. J Am Coll Cardiol 1988;12:1064–72. van Dijkman PRM, Doornbos J, de Roos A, et al. Improved detection of acute myocardial infarction by magnetic resonance imaging using gadolinium-DTPA. Int J Card Imaging 1989;5: 1–8. Eichstaedt HW, Felix R, Dougherty FC, et al. Magnetic resonance imaging in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 1986;9:527–35. Nishimura T, Kobayashi H, Ohara Y, et al. Serial assessment of myocardial infarction by using gated MR imaging and Gd-DTPA. AJR Am J Roentgenol 1989;153:715–20. Adzamli K, Mei H, Leppo JA. Macromolecular infarct-specific magnetic resonance contrast agents. Invest Radiol 1994;29(suppl: 515–7. de Roos A, van der Wall EE. Evaluation of ischemic heart disease by magnetic resonance imaging and spectroscopy. Radiol Clin North Am 1994;32:581–92. van Rugge FP, van der Wall EE, van Dijkman PRM, et al. Usefulness of ultrafast magnetic resonance imaging in healed myocardial infarction. Am J Cardiol 1992;70:1233–7. Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990; 174:757–62. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991;18:959–65. Brown JJ, Mirowitz SA, Sandstrom JC, Perman WH. MR spectroscopy of the heart. AJR Am J Roentgenol 1990;155:1–11. Guth BD, Martin JF, Heusch G, Ross JJ. Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion in dogs. J Am Coll Cardiol 1987;10:673–81. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 1990;323:1593–600. Rehr PB, Tatum JL, Hirsch JI, Clarke G. Reperfused-viable and reperfused-infarcted myocardium: differentiation with in vivo P-31 MR spectroscopy. Radiology 1989;172:53–8. Mitsunami K, Okada M, Inoue T, Hachisuka M, Kinoshita M, Inubushi T. In vivo 31P nuclear magnetic resonance spectroscopy in patients with old myocardial infarction. Jpn Circ J 1992;56: 614–9.