Assessment of interactions and dosage recommendations of synthetic DMARDs—Evidence-based and consensus-based recommendations based on a systematic literature search

Zeitschrift für Rheumatologie - Trang 1-12 - 2023
C. Fiehn1,2, J. Leipe1,3, C. Weseloh1,4, R. Bergner1,5, K. Krüger1,6
1Kommission Pharmakotherapie, Deutsche Gesellschaft für Rheumatologie (DGRh), Berlin, Germany
2Tätigkeitsschwerpunkt klinische Immunologie, Rheumatologie Baden-Baden, Baden-Baden, Germany
3V. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim, Germany
4Deutsche Gesellschaft für Rheumatologie (DGRh), Berlin, Germany
5Medizinische Klinik A, Klinikum Ludwigshafen, Ludwigshafen, Germany
6Rheumatologisches Praxiszentrum St. Bonifatius, Munich, Germany

Tóm tắt

Conventional synthetic (cs) and targeted synthetic (ts) disease-modifying antirheumatic drugs (DMARD) have potential interactions with a multitude of drugs. Furthermore, they sometimes have a lower therapeutic index, particularly in cases of limited organ functions. The aim of this work was to establish evidence-based recommendations on the therapeutic use of DMARDs in the context of drug interactions and dosage recommendations. A systematic literature search was carried out on the issue of drug interactions and dosages in cases of patients with limited kidney function and higher age and suffering from rheumatoid arthritis. A total of 2756 scientific publications were screened and 154 selected of which 68 were scrutinized in detail. Furthermore, the respective product information was also analyzed. A multitude of possible interactions of synthetic DMARDs with different drugs were detected, which were then assessed with respect to the clinical significance and consequences. A consensus process led to making recommendations with which the interactions were classified: A: dangerous combination, B: avoid combination (if possible, pausing DMARD treatment), C: possible combination requiring increased monitoring and potential adjustments in dosage and D: pharmacological interaction without relevance in DMARD standard doses. Apart from that dosage recommendations were established for each csDMARD and tsDMARD depending on kidney function and age. There are 3 primary recommendations and 11 core recommendations on interactions and dosages of csDMARDs and tsDMARDs meant as a practical help for therapeutic decision making and to improve safety in the treatment of rheumatoid arthritis.

Tài liệu tham khảo

Filkova M, Carvalho J, Norton S et al (2017) Polypharmacy and unplanned hospitalizations in patients with rheumatoid arthritis. J Rheumatol 44:1786–1179 Fiehn C (2016) Pharmakologie von Methotrexat. In: Müller-Ladner U, Rau R (eds) Methotrexat bei Autoimmunerkrankungen – moderne Therapiekonzepte in der Rheumatologie, Dermatologie und Gastroenterologie, 1 edn. UNI-MED, Bremen, pp 23–29 Lim AY, Gaffney K, Scott DG (2005) Methotrexate-induced pancytopenia: serious and under-reported? Our experience of 25 cases in 5 years. Rheumatology 44(8):1051–1055 Bourré-Tessier J, Haraoui B (2010) Methotrexate drug interactions in the treatment of rheumatoid arthritis: a systematic review. J Rheumatol 37(7):1416–1421 Kwon OC, Lee JS, Kim YG et al (2018) Safety of the concomitant use of methotrexate and a prophylactic dose of trimethoprim-sulfamethoxazole. Clin Rheumatol 37(12):3215–3220 Svanström H, Lund M, Melbye M, Pasternak B (2018) Concomitant use of low-dose methotrexate and NSAIDs and the risk of serious adverse events among patients with rheumatoid arthritis. Pharmacoepidemiol Drug Saf 27(8):885–893 Ahern M, Booth J, Loxton A et al (1988) Methotrexate kinetics in rheumatoid arthritis: is there an interaction with nonsteroidal antiinflammatory drugs? J Rheumatol 15(9):1356–1360 Schwartz JI, Agrawal NG, Wong PH et al (2009) Examination of the effect of increasing doses of etoricoxib on oral methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Clin Pharmacol 49(10):1202–1209 Karim A, Tolbert DS, Hunt TL et al (1999) Celecoxib, a specific COX‑2 inhibitor, has no significant effect on methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Rheumatol 12:2539–2543 Vanhoof J, Landewe S, Van Wijngaerden E et al (2003) High incidence of hepatotoxicity of isoniazid treatment for tuberculosis chemoprophylaxis in patients with rheumatoid arthritis treated with methotrexate or sulfasalazine and anti-tumour necrosis factor inhibitors. Ann Rheum Dis 62(12):1241–1242 Bird P, Griffiths H, Tymms K et al (2013) The SMILE study—safety of methotrexate in combination with leflunomide in rheumatoid arthritis. J Rheumatol 40(3):228–235 Chan J, Sanders DC, Du L et al (2004) Leflunomide-associated pancytopenia with or without methotrexate. Ann Pharmacother 38(7–8):1206–1211 Bredemeier M, Ranza R, Kakehasi AM et al (2021) Safety of the methotrexate-leflunomide combination in rheumatoid arthritis: results of a multicentric, registry-based, cohort study (biobadabrasil). J Rheumatol 48(10):1519–1527 Quach LT, Chang BH, Brophy MT et al (2017) Rheumatoid arthritis triple therapy compared with etanercept: difference in infectious and gastrointestinal adverse events. Rheumatology 56(3):378–383 Basin KS, Escalante A, Beardmore TD (1991) Severe pancytopenia in a patient taking low dose methotrexate and probenecid. J Rheumatol 18(4):609–610 Sathi N, Ackah J, Dawson J (2006) Methotrexate induced neutropenia associated with coprescription of penicillins: serious and under-reported? Rheumatology 45(3):361–362 Homann F, Bantel C, Jobski K (2019) Agranulocytosis attributed to metamizole: an analysis of spontaneous reports in EudraVigilance 1985–2017. Basic Clin Pharmacol Toxicol 126:116–125 Bologna C, Viu P, Jorgensen C et al (1996) Effect of age on the efficacy and tolerance of methotrexate in rheumatoid arthritis. Br J Rheumatol 35(5):453–457 Patil P, Parker RA, Rawcliffe C et al (2014) Methotrexate-induced nausea and vomiting in adolescent and young adult patients. Clin Rheumatol 33(3):403–407 Bressolle F, Bologna C, Kinowski JM (1989) Effects of moderate renal insufficiency on pharmacokinetics of methotrexate in rheumatoid arthritis patients. Ann Rheum Dis 57:110–113 Furst DE (1996) Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 5(1):S11–5 Leden I (1982) Digoxin-hydroxychloroquine interaction. Acta Med Scand 211:411–412 Ette EI, Brown-Awala EA, Essien EE (1987) Chloroquine elimination in humans: effect of low-dose cimetidine. J Clin Pharmacol 27:813–816 Choi BJ, Koo Y, Kim TY et al (2021) Risk of QT prolongation through drug interactions between hydroxychloroquine and concomitant drugs prescribed in real world practice. Nat Sci Rep 11:6918 Lane JCE, Weaver J, Kostka K et al (2020) Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study. Lancet Rheumatol 2:e698–711 Melles RB, Marmor MF (2014) The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol 132:1453–1460 Fiehn C, Ness T, Weseloh C et al (2019) Sicherheitsmanagement der Therapie mit Antimalariamitteln in der Rheumatologie. Interdisziplinäre Empfehlungen auf der Basis einer systematischen Literaturrecherche. Z Rheumatol 79(2):186–194 Plosker GL, Croom KF (2005) Sulfasalazine. Drugs 65:1825–1849 Juhl RP, Summers RW, Guillory JK et al (1976) Effect of sulfasalazine on digoxin bioavailability. Clin Pharmacol Ther 20:387–394 Jansen G, van der Heijden J, Oerlemans R et al (2004) Sulfasalazine is a potent inhibitor of the reduced folate carrier—implications for combination therapies with methotrexate in rheumatoid arthritis. Arthritis Rheum 50:2130–2139 Das KM, Eastwood MA (1973) Effect of iron and calcium on salicylazosulphapyridine metabolism. Scott Med J 18:45–50 Du Cheyron D, Debruyne D, Lobbedez T et al (1999) Effect of sulfasalazine on cyclosporin blood concentration. Eur J Clin Pharmacol 55:227–228 Prakash A, Jarvis B (1999) Leflunomid: a review of its use in active rheumatoid arthritis. Drugs 58(6):1137–1164 Lim V, Pande I (2002) Leflunomide can potentiate the anticoagulant effect of warfarin. BMJ 325(7376):1333 Chonlahan J, Halloran MA, Hammonds A (2006) Leflunomide and warfarin interaction: case report and review of the literature. Pharmacotherapy 26(6):868–871 Rutanen J, Kononoff A, Arstila L et al (2014) Five cases of interstitial lung disease after leflunomide was combined with methotrexate therapy. Scand J Rheumatol 43(3):254–258 Burmester GR, Mariette X, Montecucco C et al (2007) Adalimumab alone and in combination with disease-modifying antirheumatic drugs for the treatment of rheumatoid arthritis in clinical practice: the research in active rheumatoid arthritis (react) trial. Ann Rheum Dis 66(6):732–739 Narváez J, Díaz-Torné C, Ruiz JM et al (2011) Comparative effectiveness of rituximab in combination with either methotrexate or leflunomide in the treatment of rheumatoid arthritis. Semin Arthritis Rheum 41(3):401–405 Behrens F, Koehm M, Rossmanith T et al (2021) Rituximab plus leflunomide in rheumatoid arthritis: a randomized, placebo-controlled, investigator-initiated clinical trial (AMARA study). Rheumatology 60(11):5318–5328 Beaman JM, Hackett LP, Luxton G et al (2002) Effect of hemodialysis on leflunomide plasma concentrations. Ann Pharmacother 36(1):75–77 Iwamoto M, Homma S, Asano Y et al (2005) Administration of leflunomide to a patient with rheumatoid arthritis on haemodialysis. Scand J Rheumatol 34(5):410–411 Bergner R, Peters L, Schmitt V et al (2013) Leflunomide in dialysis patients with rheumatoid arthritis—a pharmacokinetic study. Clin Rheumatol 32(2):267–270 Russo PA, Wiese MD, Smith MD et al (2013) Leflunomide for inflammatory arthritis in end-stage renal disease on peritoneal dialysis: a pharmacokinetic and pharmacogenetic study. Ann Pharmacother 47:e15 Scott LJ (2017) Tofacitinib: a review in rheumatoid arthritis. Drugs 77:1865–1879 Gupta P, Chow V, Wang R et al (2014) Evaluation of the effect of fluconazole and ketoconazole on the pharmacokinetics of tofacitinib in healthy adult subjects. Clin Pharmacol Drug Dev 3:72–77 Guo X, Li W, Li Q et al (2019) Tofacitinib is a mechanism-based inactivator of cytochrome P450 3A4. Chem Res Toxicol 32:1791–1800 Veeravalli V, Dash RP, Thomas JA et al (2020) Critical assessment of pharmacokinetic drug-drug interaction potential of tofacitinib, baricitinib and upadacitinib, the three approved Janus Kinase inhibitors for rheumatoid arthritis treatment. Drug Saf 43:711–725 Shi JG, Chen X, Lee F et al (2014) The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol 54:1354–1361 Mogul A, Corsi K, McAuliffe L (2019) Baricitinib: the second FDA-approved JAK inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother 53:947–953 Posada MM, Cannady EA, Payne CD et al (2017) Prediction of transporter-mediated drug-drug interactions for baricitinib. Clin Transl Sci 10(6):509–519 Al-Salama ZT, Scott LJ (2018) Baricitinib: a review in rheumatoid arthritis. Drugs 78:761–772 Meng A, Anderson K, Nelson C et al (2022) Exposure-response relationships for the efficacy and safety of filgotinib and its metabolite GS-829845 in subjects with rheumatoid arthritis based on phase 2 and phase 3 studies. Br J Clin Pharmacol 88:3211–3221 Dhillon S, Keam SJ (2020) Filgotinib: first approval. Drugs 80:1987–1997 Hsueh CH, Anderson K, Shen G et al (2022) Evaluation of the potential drug interactions mediated through P‑gp, OCT2, and MATE1/2K with filgotinib in healthy subjects. Clin Transl Sci 15:361–370 Anderson K, Nelson CH, Gong Q et al (2022) Assessment of the effect of filgotinib on the pharmacokinetics of atorvastatin, pravastatin, and rosuvastatin in healthy adult participants. Clin Pharmacol Drug Dev 11:235–245 Namour F, Desrivot J, Van der Aa A et al (2016) Clinical confirmation that the selective JAK1 inhibitor filgotinib (GLPG0634) has a low liability for drug-drug interactions. Drug Metab Lett 10:38–48 Mohamed MF, Jungerwirth S, Asatryan A et al (2017) Assessment of effect of CYP3A inhibition, CYP induction, OATP1B inhibition, and high-fat meal on pharmacokinetics of the JAK1 inhibitor upadacitinib. Br J Clin Pharmacol 83:2242–2248 Mohamed MF, Camp HS, Jiang P et al (2016) Pharmacokinetics, safety and tolerability of ABT-494, a novel selective JAK 1 inhibitor, in healthy volunteers and subjects with rheumatoid arthritis. Clin Pharmacokinet 55(12):1547–1558 Menon S, Riese R, Wang R et al (2016) Evaluation of the effect of tofacitinib on the pharmacokinetics of oral contraceptive steroids in healthy female volunteers. Clin Pharmacol Drug Dev 5:336–342 Begley R, Anderson K, Watkins TR et al (2021) Lack of drug-drug interaction between filgotinib, a selective JAK1 inhibitor, and oral hormonal contraceptives levonorgestrel/ethinyl estradiol in healthy volunteers. Clin Pharmacol Drug Dev 10:376–383 Mohamed MF, Trueman S, Feng T et al (2019) The JAK1 inhibitor upadacitinib has no effect on the pharmacokinetics of levonorgestrel and ethinylestradiol: a study in healthy female subjects. J Clin Pharmacol 59:510–516 Payne C, Zhang X, Shahri N et al (2015) AB0492 evaluation of potential drug-drug interactions with baricitinib. Ann Rheum Dis 74:1063–1063