Assessment of homotopy–perturbation and perturbation methods in heat radiation equations

International Communications in Heat and Mass Transfer - Tập 33 Số 3 - Trang 391-400 - 2006
D.D. Ganji1, A. Rajabi1
1Mazandaran University, Department of Mechanical Engineering, P. O. Box 484, Babol, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bellman, 1964

Cole, 1968

O'Malley, 1974

Nayfeh, 1973

Van Dyke, 1975

Liu, 1997, New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique

Liao, 1995, An approximate solution technique not depending on small parameters: a special example, Int. J. Non-Linear Mech., 303, 371, 10.1016/0020-7462(94)00054-E

Liao, 1997, Boundary element method for general nonlinear differential operators, Eng. Anal. Bound. Elem., 202, 91, 10.1016/S0955-7997(97)00043-X

He, 1998, Approximate analytical solution for seepage flow with fractional derivatives in porous media, J. Comput. Math. Appl. Mech. Eng., 167, 57, 10.1016/S0045-7825(98)00108-X

He, 1998, Approximate solution for nonlinear differential equations with convolution product nonlinearities, Comput. Math. Appl. Mech. Eng., 167, 69, 10.1016/S0045-7825(98)00109-1

He, 1999, Variational iteration method: a kind of nonlinear analytical technique: some examples, Int. J. Non-Linear Mech., 344, 699, 10.1016/S0020-7462(98)00048-1

Carslaw, 1959

Aziz, 1977, Regular perturbation expansions in heat transfer, Int. J. Mech. Eng. Educ., 5, 167

He, 1999, Homotopy perturbation technique, J. Comput. Math. Appl. Mech. Eng., 17, 257, 10.1016/S0045-7825(99)00018-3

He, 2000, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Non-Linear Mech., 351, 37, 10.1016/S0020-7462(98)00085-7

Aziz, 1995, Perturbation solution for convecting fin with variable thermal conductivity, J. Heat Transfer, 97, 300, 10.1115/1.3450361