Assessment of homotopy–perturbation and perturbation methods in heat radiation equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bellman, 1964
Cole, 1968
O'Malley, 1974
Nayfeh, 1973
Van Dyke, 1975
Liu, 1997, New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique
Liao, 1995, An approximate solution technique not depending on small parameters: a special example, Int. J. Non-Linear Mech., 303, 371, 10.1016/0020-7462(94)00054-E
Liao, 1997, Boundary element method for general nonlinear differential operators, Eng. Anal. Bound. Elem., 202, 91, 10.1016/S0955-7997(97)00043-X
He, 1998, Approximate analytical solution for seepage flow with fractional derivatives in porous media, J. Comput. Math. Appl. Mech. Eng., 167, 57, 10.1016/S0045-7825(98)00108-X
He, 1998, Approximate solution for nonlinear differential equations with convolution product nonlinearities, Comput. Math. Appl. Mech. Eng., 167, 69, 10.1016/S0045-7825(98)00109-1
He, 1999, Variational iteration method: a kind of nonlinear analytical technique: some examples, Int. J. Non-Linear Mech., 344, 699, 10.1016/S0020-7462(98)00048-1
Carslaw, 1959
Aziz, 1977, Regular perturbation expansions in heat transfer, Int. J. Mech. Eng. Educ., 5, 167
He, 1999, Homotopy perturbation technique, J. Comput. Math. Appl. Mech. Eng., 17, 257, 10.1016/S0045-7825(99)00018-3
He, 2000, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Non-Linear Mech., 351, 37, 10.1016/S0020-7462(98)00085-7