Đánh giá cấu trúc cộng đồng thảo mộc để xác định các loài chịu kim loại tại các vùng đất sử dụng khác nhau trong và xung quanh thành phố Varanasi

Srishti Mishra1, Shashi Bhushan Agrawal1, Madhoolika Agrawal1
1Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India

Tóm tắt

Cấu trúc cộng đồng thực vật dưới các hình thức sử dụng đất khác nhau cung cấp một hiểu biết quan trọng về động thái của thảm thực vật nhằm bảo vệ các chương trình phục hồi trong tương lai và cân bằng các dịch vụ hệ sinh thái. Do đó, nghiên cứu này được thực hiện để ước tính những biến đổi trong tính chất đất và ô nhiễm bởi các kim loại có thể gây độc hại ở các hình thức sử dụng đất khác nhau (công nghiệp, lò gạch, cao tốc và khu dân cư) so với khu vực tham chiếu (khu vườn thực vật), cùng với ảnh hưởng tiếp theo của chúng đến cấu trúc cộng đồng thảo mộc, khả năng sinh tập trung, chuyển vị và lượng kim loại được chiết xuất ở các loài thực vật khác nhau. Hầu hết các kim loại tổng thể và có thể sinh học (Co, Cr, Cd, Cu, Ni, Pb, Mn và Zn) cao hơn ở các địa điểm ô nhiễm so với khu vực tham chiếu. Số lượng loài thảo mộc cao nhất tại khu vực tham chiếu và thấp nhất tại địa điểm công nghiệp. Các loài chiếm ưu thế và chịu đựng là Cyanodon dactylon, Croton bonaplandianus, Achyranthus aspera, Malvestrum coromendelianum, Dicanthium annulatum, Nicotiana hindostana, Sporobolus virginicus và Parthenium hysterophorus, được tìm thấy ở các địa điểm công nghiệp, lò gạch và cao tốc. Dựa trên hệ số chuyển giao, C. bonaplandianus, D. annulatum và Eleusine indica được công nhận là những loài tích lũy tiềm năng, trong khi C. dactylon, Commelina benghalensis, A. aspera, Amaranthus sessilis và M. coromendelianum được coi là các loài loại trừ cho các kim loại khác nhau. Các loài thảo mộc chịu đựng được xác định có thể được sử dụng cho các chiến lược phục hồi sinh thái trong tương lai và phòng ngừa các rủi ro nguy hiểm đối với các thành phần sống của các khu vực ô nhiễm.

Từ khóa

#cấu trúc cộng đồng thảo mộc #ô nhiễm kim loại #cây chịu kim loại #phục hồi sinh thái #các vùng đất sử dụng khác nhau

Tài liệu tham khảo

Adejumo SA, Oniosun B, Agnes O (2021) Anatomical changes, osmolytes accumulation and distribution in the native plants growing on. Environ Geochem Health 43:1537–1549. https://doi.org/10.1007/s10653-020-00649-5 Awashthi SK (2000) Central and state rules as amended for 1999: Prevention of Food Adulteration Act no 37 of 1954. Central and State Rules as Amended for 1999. Ashoka Law House, New Delhi. https://scholar.google.com/scholarhl=en&as_sdt=0%2C5&q=Awashthi+SK+%282000%29&btnG=. Accessed on 22.10.2022 Balabane M, Faivre D, Van Oort F, Dahmani-Muller H (1999) Mutual effects of soil organic matter dynamics and heavy metals fate in a metallophyte grassland. Environ Pollut 105(1):45–54. https://doi.org/10.1016/S0269-7491(98)00209-7 Bengtsson J, Bullock JM, Egoh B et al (2019) Grasslands—more important for ecosystem services than you might think. Ecosphere 10(2):02582. https://doi.org/10.1002/ecs2.2582 Buchmann MF (2008) NOAA Screening Quick Reference Tables, NOAA OR&R Report 08–1. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, Seattle (WA), 34. https://repository.library.noaa.gov/view/noaa/9327. Accessed on 23.10.2022 Dubey NK (2004) Flora of BHU Campus. BHU Publication Cell, Varanasi, 180 Emamverdian A, Ding Y, Mokhberdoran F et al (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 756120. https://doi.org/10.1155/2015/756120 García-salgado S, García-casillas D (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 559–572. https://doi.org/10.1007/s11270-011-0882-x Gautam M, Agrawal M (2019) Identification of metal tolerant plant species for sustainable phytomanagement of abandoned red mud dumps. Appl Geochem 104:83–92. https://doi.org/10.1016/j.apgeochem.2019.03.020 Gautam M, Pandey B, Agrawal M (2018) Identification of indicator species at abandoned red mud dumps in comparison to residential and forest sites, accredited to soil properties. Ecol Indic 88:88–102. https://doi.org/10.1016/j.ecolind.2017.12.062 Ghosh P, Biswas S, Dutta A et al (2019) Evaluation of phytochemical constituents and antioxidant property of leaf acetone extracts of five herbaceous medicinal weeds. J Pharmac Sci Res 11(8):2806–2813 Green VS, Stott DE, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701. https://doi.org/10.1016/J.SOILBIO.2005.06.020 Hamzah, A, Hapsari RI, Priyadarshini R (2017) Similarity The potential of wild vegetation species of Eleusine indica L., and Sonchus arvensis L. for phytoremediation of Cd-contaminated soil. J Degrade Min Land Manage. 4 (3):797–805. https://doi.org/10.15243/jdmlm.2017.043.797 Harun N, Chaudhry AS, Shaheen S (2022) Connecting nutritional facts with the traditional ranking of ethnobotanically used fodder grasses by local farmers in Central Punjab of Pakistan. Sci Rep 12(1):1–15. https://doi.org/10.1038/s41598-022-15937-6 Hasan SM, Akber M, Bahar M (2021) Chromium contamination from tanning industries and Phytoremediation potential of native plants: a study of savar tannery industrial estate in Dhaka, Bangladesh. Bulletin Environ Contam Toxic 106(6):1024–1032. https://doi.org/10.1007/s00128-021-03262-z Hossain AI, MF, Rahman S, Jahan R (2014) A preliminary evaluation of antihyperglycemic and analgesic activity of Alternanthera sessilis aerial parts. BMC Complement Altern Med 14:169. http://www.biomedcentral.com/1472-6882/14/169. Accessed 12.09.2022 Indian biodiversity portal. https://indiabiodiversity.org/. (Assessed on 22.08.2022) Kamran, MA, Mufti R, Mubariz N (2014) The potential of the flora from different regions of Pakistan in phytoremediation : a review. Env Sci Pollut Res 801–812. https://doi.org/10.1007/s11356-013-2187-7 Köhl Lösch R (1999) Experimental characterization of heavy metal tolerance in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy Metal Stress in Plants. Springer, Berlin Heidelberg, pp 371–389 Kim SH, Kim KR, Kim WI et al (2017) Influence of road proximity on the concentrations of heavy metals in Korean urban agricultural soils and crops. Arch Env Contam Toxicol 72(2):260–268. https://doi.org/10.1007/s00244-016-0344-y Krebs CJ (1972) Ecology: the experimental analysis of distribution and abundance. Harper and Row, New York Kumar N, Bauddh K, Kumar S, Dwivedi N et al (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491–495. https://doi.org/10.1016/j.ecoleng.2013.10.004 Kumari A, Lal B, Rai UN (2016) Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon India. Int J Phytorem 18:592–597. https://doi.org/10.1080/15226514.2015.1086301 Lanyasunya TP, Wang H, Kariuki ST et al (2008) The potential of Commelinabenghalensisas a forage for ruminants. Anim Feed Sci Technol 144(3–4):185–195. https://doi.org/10.1016/j.anifeedsci.2007.10.009 Liu Y, Wang Y, Peng J et al (2015) Correlations between urbanization and vegetation degradation across the world’s metropolises using DMSP/OLS nighttime light data. Remote Sens 7:2067–2088. https://doi.org/10.3390/rs70202067 Lum AF, Ngwa ESA, Chikoye D et al (2014) Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala. Cameroon Int JPhytorem 16(3):302–319. https://doi.org/10.1080/15226514.2013.773282 Margalef R (1958) Temporal succession and spatial heterogeneity in phytoplankton. University of California press, California Mengistu GT, Sahilu G, Mulat W et al (2023) Assessment of native plants for their potential to remove trace metals around Legadembi tailings dam Southern Ethiopia. Environ Sci Pollut Res 30(19):55615–55624. https://doi.org/10.1007/s11356-023-26349-y Meerts P, Grommesch C (2001) Soil seed banks in a heavy-metal polluted grassland at Prayon (Belgium). Plant Ecol 155:35–45 Messias MCTB, Leite MGP, Meira Neto JAA et al (2013) Soil-vegetation relationship in quartzitic and ferruginous Brazilian rocky outcrops. Folia Geobot 48(4):509–521.https://doi.org/10.1007/s12224-013-9154-4 Mehes-Smith M, Nkongolo K Cholewa E (2013) Coping mechanisms of plants to metal contaminated soil. In: Silvern S, Young S (Eds) Environmental change and sustainability. Intech Open Limited, London, United Kingdom, pp54:53–90. Mishra S, Jaiswal B, Agrawal SB Agrawal M (2022) Ecological and health risk assessment of different land uses along with seasonal variation in toxic metal contamination around Varanasi city situated in Indo-Gangetic Plain. Environ Geochem Health 1–23. https://doi.org/10.1007/s10653-022-01417-3 Mishra S, Mukherjee A, Agrawal M (2020) Changes in herbaceous community pattern, growth and biomass accumulation under single and combined treatment of Chlorpyrifos and Malathion insecticides. Plant Arch 20(2):3503–3509 Mukherjee A, Agrawal M (2018) The influence of urban stress factors on responses of ground cover vegetation. Environ Sci Pollut Res 36194–36206. https://doi.org/10.1007/s11356-018-3437-5 Nerlekar AN, Mehta N, Pokar R et al (2022) Removal or utilization? Testing alternative approaches to the management of an invasive woody legume in an arid Indian grassland. Restor Ecol 30(1):13477. https://india.mongabay.com/2022/08/commentary-restoring-indian-grasslands-does-not-require-disturbing-soil-and-planting-grasses-but-more-science/. Accessed 22.11.2022 Pan P, Lei M, Qiao P et al (2019) Potential of indigenous plant species for phytoremediation of metal (loid)-contaminated soil in the Baoshan mining area, China. Environ Sci Pollut Res 26:23583–23592. https://doi.org/10.1007/s11356-019-05655-4 Pandey B, Agrawal M, Singh S (2014) Coal mining activities change plant community structure due to air pollution and soil degradation. Ecotox 23:1474–1483. https://doi.org/10.1007/s10646-014-1289-4 Parmar P, Dave B, Panchal K, Subramanian RB (2013) Identification of potential species Croton bonplandianum, sedges and Balanitis aegyptiaca for the application of phytoremediation. Am J Bot 2013:1246–1251 Pattanayak S, Maity D (2017) Use of Eleusine indica (L.) Gaertn. (kechilaghas) as an antipyretic medicine of herbivores. Explor Anim Med Res 7(1):94–96. http://www.animalmedicalresearch.org/. Accessed 12.09.2022 Quevauviller P, Rauret G, Rubio R et al (1997) Certified reference materials for the quality control of EDTA-and acetic acid-extractable contents of trace elements in sewage-sludge amended soils (CRMs 483 and 484). Fresen J Anal Chem 357:611–618 Rashid A, Ayub N, Ahmad T, Gul J et al (2009) Phytoaccumulation prospects of cadmium and zinc by mycorrhizal plant species growing in industrially polluted soils. Appl Geochem Health 91–98. https://doi.org/10.1007/s10653-008-9159-8 Ravankhah N, Mirzaei R, Masoum S (2017) Determination of heavy metals in surface soils around the brick kilns in an arid region Iran. J Geochem Explor 176:91–99. https://doi.org/10.1016/j.gexplo.2016.01.005 Sagar R, Singh A, Singh JS (2008) Differential effect of woody plant canopies on species composition and diversity of ground vegetation: a case study. Trop Ecol 49:189–197. http://www.tropecol.com/. Accessed 11.06.2022 Sagar R, Verma P (2010) Effects of soil physical characteristics and biotic interferences on the herbaceous community composition and species diversity on the campus of Banaras Hindu University, India. Environmentalist 30:289–298. https://doi.org/10.1007/s10669-010-9276-7 Samreen S, KhanAAl, Manzoor R (2021) Assessment of phytoremediation potential of seven weed plants growing in chromium- and nickel-contaminated soil. Water Air Soil Pollut 232. https://doi.org/10.1007/s11270-021-05124-0 Sandanov DV, Liu Y, Wang Z, Korolyuk AY (2020) Woody and herbaceous plants of inner Asia: species richness and ecogeorgraphic patterns. Contemp Probl Ecol 13(4):360–369. https://doi.org/10.1134/S1995425520040101 Sekabira K, Origa HO, Mutumba G, Kakudidi E (2011) Heavy metal phytoremediation by Commelina benghalensis(L) and Cynodondactylon (L) growing in Urban stream sediments. Int J Plant Physiol Biochem. 3:133–142. http://hdl.handle.net/20.500.12306/375. Accessed on 02.10.2022 Selim A, Bari E, Rahaman H, Rahman MM (2021) Phytosociology and biodiversity of roadside herbs in a salinity-affected coastal area of Bangladesh. Heliyon 7:1–8. https://doi.org/10.1016/j.heliyon.2021.e07813 Shannon CE, Weaver W (1964) The Mathematical Theory of Communication. University of Illinois Press, Urbana, 132. https://pure.mpg.de/rest/items/item_2383164/component/file_2383163/content Shi ZJ, Lu Y, Xu ZG, Fu SL (2008) Enzyme activities of urban soils under different land use in the Shenzhen city, China. Plant Soil Env 341–346. Simpson EH (1949) Measurement of diversity. Nature 163:688 Singh A, Agrawal M (2010) Effects of municipal waste water irrigation on availability of heavy metals and morpho-physiological characteristics of Beta vulgaris L. J Environ Bio. 31(5):727 http://www.jeb.co.in/. Accessed on 21.08.2022 Sorenson T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K Dan Vidensk Selsk Biol Skr 5:1–34 Sun Y, Ding J, Frye MJ (2010) Effects of resource availability on tolerance of herbivory in the invasive Alternanthera philoxeroides and the native Alternanthera sessilis. Weed Res 50:527–536. https://doi.org/10.1111/j.1365-3180.2010.00822.x Walker JS, Grimm NB, Briggs JM (2009) Effects of urbanization on plant species diversity in Central Arizona. Front Ecol Environ 7:465–470. https://doi.org/10.1890/080084 Whittaker RH (1960) Vegetation of the Siskiyou Mountains Oregon and California. Ecol Monogr 30:279–338 Wu Q, Leung JY, Geng X, Chen S (2015) Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Sci Total Env 506:217–225. https://doi.org/10.1016/j.scitotenv.2014.10.121 Yang J, Sun L, Shen X et al (2022) An overview of the methods for analyzing the chemical forms of metals in plants. Int J Phytoremediation 1–13. https://doi.org/10.1080/15226514.2022.2033687 Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Env 368:456–464. https://doi.org/10.1016/j.scitotenv.2006.01.016 Zhang X, Gao B, Xia H (2014) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicol. https://doi.org/10.1016/j.ecoenv.2014.04.025 Zhang X, Xia H, Li Z, Zhuang P et al (2010) Bioresource technology potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066. https://doi.org/10.1016/j.biortech.2009.11.065 Zhang Y, Qin P, Lu S et al (2021) Occurrence and risk evaluation of organophosphorus pesticides in typical water bodies of Beijing. China. Environ Sci Pollut Res 1454–1463. https://doi.org/10.1007/s11356-020-10288-z Zhang Y, Wang Q, Wang Z et al (2020) Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Sci Total Env 698:134304. https://doi.org/10.1016/j.scitotenv.2019.134304