Đánh giá công nghệ quét laser mặt đất di động cầm tay trong việc ước lượng các tham số cây trồng

Journal of Northeast Forestry University - Tập 32 - Trang 1503-1513 - 2020
Cornelis Stal1,2, Jeffrey Verbeurgt2, Lars De Sloover2,3, Alain De Wulf2
1Center for Applied Data Science, University College Ghent, Ghent, Belgium
2Department of Geography, 3D Data Acquisition Research Unit, Ghent University, Ghent, Belgium
3Department of Geography, CartoGIS Research Unit, Ghent University, Ghent, Belgium

Tóm tắt

Quản lý rừng bền vững phụ thuộc nhiều vào việc ước lượng chính xác các tham số của cây, trong đó đường kính ở chiều cao ngực (DBH) là yếu tố quan trọng để xác định thể tích và khối lượng của từng cây. Để ước lượng thể tích của toàn bộ ô mẫu một cách có hệ thống, dữ liệu quét laser trên không (ALS) được sử dụng. Mô hình ước lượng thường được hiệu chỉnh bằng cách sử dụng các phép đo DBH thủ công hoặc các quét laser mặt đất tĩnh (STLS) của các ô mẫu. Mặc dù đáng tin cậy, phương pháp này tốn nhiều thời gian, điều này làm cản trở việc áp dụng. Ở đây, một công nghệ quét laser mặt đất di động cầm tay (HMTLS) đã được chứng minh là một kỹ thuật thay thế hữu ích để tính toán chính xác và hiệu quả DBH. Nhiều kỹ thuật thu thập dữ liệu khác nhau đã được áp dụng tại một ô mẫu, sau đó các tham số thu được được phân tích so sánh. Các giá trị DBH được tính toán có thể so sánh với các phép đo thủ công cho các bộ dữ liệu HMTLS, STLS và ALS. Với độ tương đương của các tham số được chiết xuất, với độ mật độ điểm thấp hơn của HMTLS so với dữ liệu STLS, và sự gia tăng hợp lý về hiệu suất, với việc giảm thời gian thu thập với hệ số 5 so với các kỹ thuật STLS thông thường và hệ số 3 so với các phép đo thủ công, HMTLS được coi là một kỹ thuật thay thế hữu ích.

Từ khóa

#quét laser mặt đất di động cầm tay #đường kính ở chiều cao ngực #quản lý rừng bền vững #ước lượng thể tích cây.

Tài liệu tham khảo

Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Stat 32:307. https://doi.org/10.2307/2987937 Altman DG, Bland JM (1987) Statistical methods for assessing agreement between measurement. Biochimica 11:399–404 Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping (SLAM): part II. IEEE Robot Autom Mag 13:108–117. https://doi.org/10.1109/MRA.2006.1678144 Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54:199–214. https://doi.org/10.1016/S0924-2716(99)00015-5 Bauwens S, Bartholomeus H, Calders K, Lejeune P (2016) Forest inventory with terrestrial LiDAR: a comparison of static and hand-held mobile laser scanning. Forests 7:127. https://doi.org/10.3390/f7060127 Bienert A, Maas H, Scheller S (2006) Analysis of the information content of terrestrial laserscanner point clouds for the automatic determination of forest inventory parameters. In: Workshop on 3D remote sensing in forestry. pp 1–7 Bland JM, Altman DG (1992) Comparing methods of clinical measurement - a citation-classic. Curr Contents / Clin Med 5:8 Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 327:307–310. https://doi.org/10.1016/S0140-6736(86)90837-8 Boehler W, Marbs A (2003) Investigating laser scanner accuracy. Int Arch Photogramm Remote Sens Spat Inf Sci 34:696–701. https://doi.org/10.1002/pbc.ABSTRACT Bosse M, Zlot R, Flick P (2012) Zebedee: design of a spring-mounted 3-D range sensor with application to mobile mapping. IEEE Trans Robot 28:1104–1119 Coomes DA, Dalponte M, Jucker T, Asner GP, Banin LF, Burslem DFRP, Lewis SL, Nilus R, Phillips OL, Phua MH, Qie L (2017) Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens Environ 194:77–88. https://doi.org/10.1016/j.rse.2017.03.017 Dassot M, Colin A, Santenoise P, Fournier M, Constant T (2012) Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput Electron Agric 89:86–93. https://doi.org/10.1016/j.compag.2012.08.005 Doneus M, Briese C, Fera M, Janner M (2008) Archaeological prospection of forested areas using full-waveform airborne laser scanning. J Archaeol Sci 35:882–893. https://doi.org/10.1016/j.jas.2007.06.013 Faltýnová M, Matoušková E, Šedina J, Pavelka K (2016) Building facade documentation using laser scanning and photogrammetry and data implementation into BIM. Int Arch Photogramm Remote Sens Spat Inf Sci 41:215–220. https://doi.org/10.5194/isprsarchives-XLI-B3-215-2016 Fassi F, Fregonese L, Ackermann S, De Troia V (2013) Comparison between laser scanning and automated 3D modeling techniques to resconstruct complex and extensive cultural heritage areas. Int Arch Photogramm Remote Sens Spat Inf Sci 5(W1):73–80 Girardeau-Montaut D (2020) CloudCompare (3D point cloud and mesh processing software Open Source Project),available at: https://www.cloudcompare.org/ González-Jorge H, Rodríguez-Gonzálvez P, Shen YQ, Lagüela S, Diaz-Vilarino L, Lindenbergh R, Gonzalez-Aguilera D, Arias P (2017) Metrological intercomparison of six terrestrial laser scanning systems. IET Sci Meas Technol 12:218–222 Guan HY, Li J, Cao S, Yu YT (2016) Use of mobile LiDAR in road information inventory. Int J Image Data Fusion 7:219–242. https://doi.org/10.1080/19479832.2016.1188860 Hancock S, Anderson K, Disney M, Gaston KJ (2017) Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: calibration and validation with voxelised terrestrial lidar. Remote Sens Environ 188:37–50. https://doi.org/10.1016/J.RSE.2016.10.041 Hauglin M, Dibdiakova J, Gobakken T, Næsset E (2013) Estimating single-tree branch biomass of Norway spruce by airborne laser scanning. ISPRS J Photogramm Remote Sens 79:147–156. https://doi.org/10.1016/j.isprsjprs.2013.02.013 Jayathunga S, Owari T, Tsuyuki S (2018) Analysis of forest structural complexity using airborne LiDAR data and aerial photography in a mixed conifer–broadleaf forest in northern Japan. J For Res 29(2):479–493. https://doi.org/10.1007/s11676-017-0441-4 Jin S, Tamura M, Susaki J (2016) A new approach to retrieve leaf normal distribution using terrestrial laser scanners. J For Res 27(3):631–638. https://doi.org/10.1007/s11676-015-0204-z Leica (2017) Leica-Geosystems: ScanStation P30/P40 specifications. https://leica-geosystems.com. Accessed 15 April 2020 Leonard JJ, Durrant-Whyte HF (1991) Mobile robot localization by tracking geometric beacons. IEEE Trans Robot Autom 7:376–382. https://doi.org/10.1109/70.88147 Liang XL, Kankare V, Hyyppä J, Wang YS, Kukko A, Haggrén H, Yu XW, Kaartinen H, Jaakkola A, Guan FY, Holopainen M, Vastaranta M (2016) Terrestrial laser scanning in forest inventories. ISPRS J Photogramm Remote Sens 115:63–77. https://doi.org/10.1016/j.isprsjprs.2016.01.006 Lovell JL, Jupp DLB, Newnham GJ, Culvenor DS (2011) Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint. ISPRS J Photogramm Remote Sens 66:46–55. https://doi.org/10.1016/j.isprsjprs.2010.08.006 Maisonobe L (2007) Finding the circle that best fits a set of points. In: https://www.spaceroots.org/ Melville GJ, Welsh AH, Stone C (2015) Improving the efficiency and precision of tree counts in pine plantations using airborne LiDAR data and flexible-radius plots: model-based and design-based approaches. J Agric Biol Environ Stat 20:229–257. https://doi.org/10.1007/s13253-015-0205-6 Olofsson K, Holmgren J, Olsson H (2014) Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sens 6:4323–4344. https://doi.org/10.3390/rs6054323 Othmani A, Piboule A, Krebs M, Stolz C, Lew Yan Voon LFC (2011) Towards automated and operational forest inventories with T-Lidar. 11th International conference on LiDAR applications for assessing forest ecosystems (SilviLaser 2011), Oct. 16‒19—Hobart, Australia. https://hal.archives-ouvertes.fr/hal-00646403 Oude Elberink S, Vosselman G (2011) Quality analysis on 3D building models reconstructed from airborne laser scanning data. ISPRS J Photogramm Remote Sens 66:157–165. https://doi.org/10.1016/j.isprsjprs.2010.09.009 Petrie G, Toth CK, Toth CK (2018) Terrestrial laser scanners. In: Topographic laser ranging and scanning. CRC Press, Second edition. Boca Raton : Taylor and Francis, CRC Press, 2018, pp 29–88 Piboule A, Krebs M, Esclatine L, Hervé J (2013) Computree: a collaborative platform for use of terrestrial lidar in dendrometry. In: Proceedings of the International IUFRO Conference MeMoWood. Nancy, pp 1–4 Roelens J, Dondeyne S, Van Orshoven J, Diels J (2016) Extracting cross sections and water levels of vegetated ditches from LiDAR point clouds. Int J Appl Earth Obs Geoinf 53:64–75. https://doi.org/10.1016/j.jag.2016.08.003 Ryding J, Williams E, Smith M, Eichhorn M (2015) Assessing handheld mobile laser scanners for forest surveys. Remote Sens 7:1095–1111. https://doi.org/10.3390/rs70101095 Shang C, Jones T, Treitz P (2016) Effect of size and number of calibration plots on the estimation of stem diameter distributions using airborne laser scanning. In: International geoscience and remote sensing symposium (IGARSS). Institute of Electrical and Electronics Engineers Inc., pp 1753–1756 Smith R, Self M, Cheeseman P (1990) Estimating uncertain spatial relationships in robotics. Autonomous robot vehicles. Springer, New York, pp 167–193 Stal C, Tack F, De Maeyer P, De Wulf A, Goossens R (2013) Airborne photogrammetry and lidar for DSM extraction and 3D change detection over an urban area—a comparative study. Int J Remote Sens 34:1087–1110. https://doi.org/10.1080/01431161.2012.717183 Stovall AEL, Shugart HH (2018) Improved biomass calibration and validation with terrestrial LiDAR: implications for future LiDAR and SAR missions. EEE J Sel Top Appl Earth Obs Remote Sens 11:3527–3537 Telling J, Lyda A, Hartzell P, Glennie C (2017) Review of earth science research using terrestrial laser scanning. Earth-Science Rev 169:35–68. https://doi.org/10.1016/J.EARSCIREV.2017.04.007 Wallace L, Lucieer A, Malenovský Z, Turner D, Vopenka P (2016) Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7(3):62. https://doi.org/10.3390/f7030062 Werbrouck I, Antrop M, Van Eetvelde V, Stal C, De Maeyer P, Bats M, Bourgeois J, Court-Picon M, Crombé P, De Reu J, De Smedt P, Finke PA, Van Meirvenne M, Verniers J, Zwertvaegher A (2011) Digital elevation model generation for historical landscape analysis based on LiDAR data, a case study in Flanders (Belgium). Expert Syst Appl 38:8178–8185. https://doi.org/10.1016/j.eswa.2010.12.162 Wilkes P, Jones SD, Suarez L, Haywood A, Mellor A, Woodgate W, Soto-Berelov M, Skidmore AK (2016) Using discrete-return airborne laser scanning to quantify number of canopy strata across diverse forest types. Methods Ecol Evol 7:700–712. https://doi.org/10.1111/2041-210X.12510 Zhao GY, Lian M, Li YY, Duan Z, Zhu SM, Mei L, Svanberg S (2017) Mobile lidar system for environmental monitoring. Appl Opt 56:1506. https://doi.org/10.1364/ao.56.001506