Assessment of groundwater quality for drinking and irrigation in the Timahdite–Almis Guigou area (Middle Atlas, Morocco)

Springer Science and Business Media LLC - Tập 12 - Trang 1-12 - 2022
Samir Amrani1, Said Hinaje1, Mohamed El Fartati2, Youssef Gharmane1, Driss Yaagoub1
1Laboratory of Intelligent Systems, Georesources and Renewable Energies, Department of Geology, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco
2Laboratory of Multidisciplinary Research & Innovation, Department of Geology, polydisciplinary, Faculty of Khouribga, Sultan Moulay Slimane University, Khouribga, Morocco

Tóm tắt

The groundwater in the Timahdite–Almis Guigou area flows through fluvio-lacustrine and volcanic formations of Plio-Quaternary age and Liassic limestone. The groundwater resources in this area are used for drinking water and irrigation of agricultural plots. 18 groundwater samples were collected for this study. The physico-chemical and bacteriological parameters analysed, such as temperature, electrical conductivity, pH, dissolved oxygen, Na+, K+, Ca2+, Mg2+, Cl−, HCO3−, SO42−, NO2−, NO3−, faecal Coliforms, total Coliforms and faecal Streptococci, are used to characterise the quality of the groundwater and its suitability for drinking and for irrigation. The Piper and Gibbs diagrams and the saturation index were used to study the hydrogeochemical characteristics of groundwater. The quality of these was assessed on the basis of bacteriological quantification and water quality index (WQI) for drinking, and calculation of sodium percentage (Na%), sodium adsorption ratio (SAR) and permeability index (PI) for irrigation. The mineral saturation index in groundwater indicates that only carbonate minerals tend to precipitate, especially in the form of dolomite. On the other hand, the evaporative minerals are still undersaturated. The bacteriological quality and the water quality index (WQI) of this area are considered to be generally good to poor quality, with the exception of a few points, near the public dump of Almis Guigou, plateau of Lamrijate (Timahdite), Aït Hamza and Aït Ghanem, that show significant bacterial contamination and high concentrations of sodium, chlorides and nitrates. According to the calculation of the (Na%), the (SAR) and (PI), the groundwater samples are suitable for irrigation.

Tài liệu tham khảo

Aghazadeh N, Mogaddam AA (2010) Assessment of groundwater quality and its suitability for dinking and agriculture uses in the Oshnavieh area, northwest of Iran. J Environ Prot 1:30–40. https://doi.org/10.4236/jep.2010.11005 Aït Slimane A (1989) Evolution structuro-sédimentaire paléogène de la partie Sud-Ouest du Moyen Atlas (Baqrit-Timahdite-Guigou, Bou Anguer, Ain Nokra, Oudiksou). Thèse 3° cycle, Fac. Sc. Marrakech, p 179 Akasbi A, Sadki S, Akhessas A, Fedan B (2001) Le ‹‹ niveau brun›› du Toarcien inférieur dans le Moyen Atlas septentrional: caractérisation, processus de mise en place et cadre géodynamique régional. Comun. Inst. Geol. e Mineiro, vol 88, pp 265–276 Amrani S, Hinaje S (2014a) Utilisation des analyses hydro-géochimiques et des analyses en composantes principales (A.C.P) dans l’explication du chimisme des eaux souterraines de la nappe plio-quaternaire entre Timahdite et Almis Guigou (Moyen Atlas, Maroc). ScienceLib Edit Mersenne 6:14 Amrani S, Hinaje S (2014b) Hydrodynamisme et minéralisation des eaux souterraines de la nappe phréatique plio-quaternaire du plateau Timahdite—Almis Guigou (Moyen Atlas, Maroc). Eur Sci J 10:174–189 Amrani S, Hinaje S (2019) Gharmane Y (2019) Application des méthodes paramétriques (drastic et si) pour l’étude de la vulnérabilité à la pollution potentielle par les nitrates de la nappe d’eau superficielle de Timahdite-Almis Guigou (Moyen Atlas, Maroc). Rev Sci Eau 32(3):237–252. https://doi.org/10.7202/1067307ar Amrani S (2016) Hydrodynamisme, hydrogéochimie et vulnérabilité de la nappe d’eau superficielle et leur relation avec la tectonique cassante dans la zone effondrée Timahdite—Almis Guigou (Moyen Atlas, Maroc). Thèse de Doct. Nat., Fac. Sci. et Tech., Université Fès, p 178 Belkhiri L, Mouni L (2013) Geochemical modeling of groundwater in the El Eulma area, Algeria. Desalin Water Treat 51(7–9):1468–1476. https://doi.org/10.1080/19443994.2012.699350 Belkhiri L, Mouni L, Boudoukha A (2012) Geochemical evolution of groundwater in an alluvial aquifer: case of El Eulma aquifer, East Algeria. Enviro Earth Sci 67:46–55. https://doi.org/10.1016/j.jafrearsci.2012.03.001 Brown RM, McClelland NI, Deininger RA, Tozer RG (1970) A water quality index: do we dare? Water Sew Works 117(10):339–343 Brown RM, McCleiland NJ, Deiniger RA, O’Connor MFA(1972) Water quality index—crossing the physical barrier. In: Jenkis SH (eds) Proceedings in international conference on water pollution research Jerusalem, vol 6, pp 787–797 Chadha DK (1999) A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7:431–439. https://doi.org/10.1007/s100400050216 Charroud M (1990) Evolution géodynamique de la partie sud-ouest du moyen atlas durant le passage jurassique-crétacé, le crétacé supérieur et le paléogène: un exemple d’évolution intraplaque. Thèse 3° cycle, Rabat p 234 Chatterji C, Raziuddin M (2002) Determination of water quality index of a degraded river in Asanol Industrial area Raniganj, Burdwan, West Bengal. Nat Environ Pollut Technol 1(2):181–189 Chbani B (1984) Sédimentologie du Crétacé et de l’éocène de Timahdit (Boulemane) C.E.A. Sciences, Trv. Dep. Géol. Fac. Sci. Marrakkech 3 Chen J, Huang Q, Lin Y, Fang Y, Qian H, Liu R, Ma H (2019) Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region, Northwest China. Water 11(1):96. https://doi.org/10.3390/w11010096 Choubert G, Salvan H, Termier H, Termier G (1952) Sur l’âge des calcaires de Timahdit (Moyen Atlas). Cent Rech Acad Sci 21:2090–2092 Colo G (1961) Contribution à l’étude du Moyen-Atlas septentrional. Not Mém Serv Géol Maroc Rabat 139:226 Doneen LD (1964) Notes on water quality in agriculture. Water Science and Engineering, University of California. Davis, p 48 Drever JF (1997) The geochemistry of natural waters, 3rd edn. Prentice-Hall Inc., New York p, p 379 Du Dresnay R (1969) Discussions stratigraphiques sur les conditions de gisements de bois fossiles mésozoiques du Maroc, étudiées par Mlles ATTIMIS Y, Cremier F et GAZEAU F. Notes Et Mém Serv Géol Maroc 210:121–178 El Arabi H (1987) Etude stratigraphique et sédimentologique du lias aux confins du causse moyen atlasique et du moyen atlas plissé (Maroc).Thèse 3° cycle, Touleuse, p 192 El Azzouzi M, Maury RC, Bellon H, Youbi N, Cotton J, Kharbouch F (2010) Petrology and K-Ar chronology of the Neogene-Quaternary Middle Atlas basaltic province, Morocco. Bull Soc Géol Fr 181(3):243–257 Fedan B, Laville E, El Mezgueldi A (1989) Le bassin jurassique du Moyen Atlas (Maroc): exemple de bassin sur relais de décrochements. Bull Soc Géol Fr 8(6):1123–1136 Fedan B (1988) Evolution géodynamique d’un bassin intraplaque sur décrouchements : (Moyen-Atlas, Maroc) durant le Méso-Cénozoïque. Thése Doctorat d’Etat univ. Mohammed V, Rabat p 338, 124 fig. Annexe hors-texte Garrels R, Mackenzie F (1967) Origin of the chemical compositions of some springs and lakes. In: Ground RF (ed) Equilibrium concepts in natural water systems. American Chemical Society Publications, Washington Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 17:1088–1090 Hamzaoui-Azaza F, Ketata M, Bouhlila R, Gueddari M (2011) Hydrochemical evolution and evolution of drinking water quality in Zeuss-Koutine aquifer, south-eastern of Tunisia. Environ Monit Assess 174:283–298 Harmand C, Cantagrel JM (1984) Le volcanisme alcalin tertiaire et quaternaire du moyen atlas (Maroc): chronologie K/Ar et cadre géodynamique. J Afric Earth Sc 2(1):595–603 Harmand C, Moukadiri A (1986) Synchronisme entre tectonique compressive et volcanisme alcalin: exemple de la province quaternaire du Moyen-Atlas (Maroc). Bull Soc Géol 4:595–603 Hassen I, Hamzaoui-Azaza F, Bouhlila R (2016) Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia. Environ Monit Assess 188:20. https://doi.org/10.1007/s10661-016-5124-7 Hinaje S, Aït Brahim L, Gourari L, Charroud M (2001) Evénements tectoniques et paléocontraintes enregistrées par les dépôts néogènes et quaternaires du Moyen Atlas (Maroc). Comm. Inst. Geol. eMineiro, t.88, pp 255–264. Hinaje S (2004) Tectonique cassante et paléochamps de contraintes dans le moyen atlas et le haut atlas central (Midelt-Errachidia) depuis le trias jusqu'à l’actuel. Thèse Doc. Etat, Univ. Rabat, p 363 Horton RK (1965) An index number system for rating water quality. J Water Pollut Control Fed 37(3):300–306 Hosseini-Moghari SM, Ebrahimi K, Azarnivand A (2015) Groundwater quality assessment with respect to fuzzy water quality index (FWQI): an application of expert systems in environmental monitoring. Environ Earth Sci 74(10):7229–7238. https://doi.org/10.1007/s12665-015-4703-1 Islam MS, Mostafa MG (2021) Hydro-geochemical evaluation of groundwater for irrigation in the Ganges river basin areas of Bangladesh. Res Sq. https://doi.org/10.21203/rs.3.rs-161359/v1 ISO 7899-2 (2000) Water quality—Detection and enumeration of intestinal enterococci—Part 2: membrane filtration method ISO 9308-1 (2000) Water quality—Detection and enumeration of Escherichia coli and coliform bacteria—Part 1: membrane filtration method Jalali M (2007) Salinization of groundwater in arid and semi-arid zones: an example from Tajarak, western Iran. Environ Geol 52(6):1133–1149. https://doi.org/10.1007/s00254-006-0551-3 Kadaoui M, Bouali A, Arabi M (2019) Assessment of physicochemical and bacteriological groundwater quality in irrigated Triffa Plain, North-East of Morocco. J Water Land Dev 42:100–109 Li W, Chen X, Xie L, Cheng G, Liu Z, Yi S (2020) Natural and human-induced factors controlling the phreatic groundwater geochemistry of the Longgang River basin, South China. Open Geosci 12(1):203–219. https://doi.org/10.1515/geo-2020-0039 Martin J (1981) Le moyen atlas central étude géomorphologique. Notes Et Mém Serv. Géol Maroc 258:445 Michard A (1976) Eléments de géologie marocaine. Notes Et Mém Serv Géol Maroc 252:408p Moukadiri A (1983) Les enclaves ultrabasiques associees aux basaltes alcalins dans le district volcaniques d’Azrou-Timahdite (Moyen Atlas, Maroc). Thése 3éme cycle, Clermont-Ferrand, p 150 Ouarhache D (1987) Etude géologique dans le paléozoïque et le Trais de la bordure NW du Causse moyen-atlasique (S et SW de Fès, Maroc). Thése de 3éme cycle. Univ. Paul-Sabatier, Touleuse, p 130 Ouarhache D, Charriere A, Chalot-Pra F, Wartiti M (2012) Triassic to early liassic continental rifting chronology and process at the southwest margin of the Alpine Tethys (Middle Atlas and High Moulouya, Morocco); Correlations with the Atlantic rifting, synchronous and diachronous. Bull Soc Geol Fr 183:233–249. https://doi.org/10.2113/gssgfbull.183.3.233 Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version2). A computer program for speciation, batch-reaction, onedimensional transport, and inverse geochemical calculations. USGS Water-Resources Investigations Report, pp 99–4259 Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans Am Geophys Union 25:914–923 Qian C, Wu X, Mu WP, Fu RZ, Zhu G, Wang ZR, Wang DD (2016) Hydrogeochemical characterization and suitability assessment of groundwater in an agro pastoral area, Ordos Basin, NW China. Environ Earth Sci 75:16. https://doi.org/10.1007/s12665-016-6123-2 Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Agric. Handbook 60, USDA, Washington D.C. 160p. Rodier J, Legube B, Merlet N (2009) Analyse de l’eau, 9th edn. In: Dunod (eds), Paris, France, p 1579 Sadat-Noori SM, Ebrahimi K, Liaghat AM (2013) Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environ Earth Sci 71(9):3827–3843. https://doi.org/10.1007/s12665-013-2770-8 Salama RB, Otto CJ, Fitzpatrick RW (1999) Contributions of groundwater conditions to soil and water salinization. Hydrogeol J 7(1):46–64. https://doi.org/10.1007/s100400050179 Salvan H (1984) Les formations évaporitiques du Trias marocain. Problèmes stratigraphiques, paléogéographiques et paléoclimatologiques. Quelques réflexions. Rev Géol Dyn Geogr Phys 25:187–203 Sheikhy Narany T, Firuz Ramli M, Zaharin Aris A, Azmin Sulaiman WN, Juahirand Kazem Fakharian H (2014) Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques, in Amol-Babol Plain, Iran. Sci World J 2014:15. https://doi.org/10.1155/2014/419058 Simler R (2009) DIAGRAMMES: logiciel d’hydrochimie multilangage en distribution libre. Laboratoire d’Hydrogéologie d’Avignon, France Subramani T, Rajmohan N, Elango L (2010) Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environ Monit Assess 162(1–4):123–137 Termier H (1936) Etude géologique sur le Maroc central et la Moyen Atlas septentrional. Notes Et Mém. Serv Géol Maroc 33:1566 Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York, p 315 WHO (2011) Hardness in drinking-water background document for development of who guidelines for drinking—water quality. World Health Organization: Geneva, Switzerland, p 19 Wilcox LV (1955) Classification and use of irrigation water, USDA, circular. Washington, DC, USA, p 969 Yang Q, Li Z, Xie C, Liang J, Ma H (2020) Risk assessment of groundwater hydrochemistry for irrigation suitability in Ordos Basin, China. Nat Hazards 101:309–325. https://doi.org/10.1007/s11069-018-3451-4 Zakaria N, Anornu G, Adomako D, Owusu-Nimo F, Gibrilla A (2020) Evolution of groundwater hydrogeochemistry and assessment of groundwater quality in the Anayari catchment. Groundw Sustain Dev. https://doi.org/10.1016/j.gsd.2020.100489