Assessment of fixation for anterior cruciate ligament reconstruction using oversized suspensory devices on full-length femoral tunnels
Tài liệu tham khảo
Ahmad, 2018, Adjustable loop ACL suspension devices demonstrate less reliability in terms of reproducibility and irreversible displacement, Knee Surg. Sports Traumatol. Arthrosc., 26, 1392, 10.1007/s00167-017-4769-2
Barrow, 2014, Femoral suspension devices for anterior cruciate ligament reconstruction: do adjustable loops lengthen?, Am. J. Sports Med., 42, 343, 10.1177/0363546513507769
Bedi, 2011, Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique, Arthroscopy, 27, 380, 10.1016/j.arthro.2010.07.018
Chang, 2010, Oblique femoral tunnel placement can increase risks of short femoral tunnel and cross-pin protrusion in anterior cruciate ligament reconstruction, Am. J. Sports Med., 38, 1237, 10.1177/0363546509357608
Chang, 2011, Comparisons of femoral tunnel position and length in anterior cruciate ligament reconstruction: modified transtibial versus anteromedial portal techniques, Arthroscopy, 27, 1389, 10.1016/j.arthro.2011.06.013
Chang, 2013, Anteromedial portal versus outside-in technique for creating femoral tunnels in anatomic anterior cruciate ligament reconstruction, Arthroscopy, 29, 1533, 10.1016/j.arthro.2013.06.011
Chang, 2018, A comparative biomechanical study of femoral cortical suspension devices for soft-tissue anterior cruciate ligament reconstruction: adjustable-length loop versus fixed-length loop, Arthroscopy, 34, 566, 10.1016/j.arthro.2017.08.294
Cheng, 2018, Biomechanical comparisons of current suspensory fixation devices for anterior cruciate ligament reconstruction, Int. Orthop., 42, 1291, 10.1007/s00264-018-3780-7
Eguchi, 2014, Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: comparison of the fixed-length loop device versus the adjustable-length loop device, Knee, 21, 743, 10.1016/j.knee.2014.02.009
Espejo-Baena, 2014, Anatomic outside-in anterior cruciate ligament reconstruction using a suspension device for femoral fixation, Arthrosc Tech, 3, e265, 10.1016/j.eats.2013.12.001
Faul, 2007, G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences, Behav. Res. Methods, 39, 175, 10.3758/BF03193146
Feucht, 2015, Biomechanical evaluation of different suture materials for arthroscopic transtibial pull-out repair of posterior meniscus root tears, Knee Surg. Sports Traumatol. Arthrosc., 23, 132, 10.1007/s00167-013-2656-z
Hammond, 2012, Lateral femoral cortical breach during anterior cruciate ligament reconstruction: a biomechanical analysis, Arthroscopy, 28, 365, 10.1016/j.arthro.2011.08.309
Herbort, 2012, Accidental perforation of the lateral femoral cortex in ACL reconstruction: an investigation of mechanical properties of different fixation techniques, Arthroscopy, 28, 382, 10.1016/j.arthro.2011.10.028
Johnson, 2015, A biomechanical comparison of femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction under high loads, Am. J. Sports Med., 43, 154, 10.1177/0363546514553779
Kamelger, 2009, Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants, Arthroscopy, 25, 767, 10.1016/j.arthro.2009.01.021
Kousa, 2003, The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site, Am. J. Sports Med., 31, 174, 10.1177/03635465030310020401
Krackow, 1988, Ligament-tendon fixation: analysis of a new stitch and comparison with standard techniques, Orthopedics, 11, 909, 10.3928/0147-7447-19880601-11
Larson, 2012, Comparison of 4 femoral tunnel drilling techniques in anterior cruciate ligament reconstruction, Arthroscopy, 28, 972, 10.1016/j.arthro.2011.12.015
Loh, 2003, Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o'clock and 10 o'clock femoral tunnel placement, Arthroscopy, 19, 297, 10.1053/jars.2003.50084
Lubowitz, 2010, Anterior cruciate ligament femoral tunnel length: cadaveric analysis comparing anteromedial portal versus outside-in technique, Arthroscopy, 26, 1357, 10.1016/j.arthro.2010.02.014
Lubowitz, 2009, Watch your footprint: anatomic ACL reconstruction, Arthroscopy, 25, 1059, 10.1016/j.arthro.2009.08.001
Mall, 2014, Incidence and trends of anterior cruciate ligament reconstruction in the United States, Am. J. Sports Med., 42, 2363, 10.1177/0363546514542796
Mariscalco, 2013, The influence of hamstring autograft size on patient-reported outcomes and risk of revisión after anterior cruciate ligament reconstruction: a multicenter orthopaedic outcomes network (MOON) cohort study, Arthroscopy, 29, 1948, 10.1016/j.arthro.2013.08.025
Noonan, 2016, Biomechanical evaluation of an adjustable loop suspensory anterior cruciate ligament reconstruction fixation device: the value of retensioning and knot tying, Arthroscopy, 32, 2050, 10.1016/j.arthro.2016.02.010
Nye DD, Mitchell WR, Liu W, Ostrander RV. (2017) Biomechanical comparison of fixed-loop and adjustable-loop cortical suspensory devices for metaphyseal femoral-sided soft tissue graft fixation in anatomic anterior cruciate ligament reconstruction using a porcine model. Arthroscopy 33(6):1225–32.e1. doi: https://doi.org/10.1016/j.arthro.2016.12.014.
Onggo, 2019, Fixed- versus adjustable-loop devices for femoral fixation in anterior cruciate ligament reconstruction: a systematic review, Arthroscopy, 10.1016/j.arthro.2019.02.029
Petre, 2013, Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction. A comparative biomechanical study, Am. J. Sports Med., 41, 416, 10.1177/0363546512469875
Prado, 2013, Close-looped graft suturing improves mechanical properties of interference screw fixation in ACL reconstruction, Knee Surg. Sports Traumatol. Arthrosc., 21, 476, 10.1007/s00167-012-1975-9
Roldán, 2017, In vivo mechanical behaviour of the anterior cruciate ligament: a study of six daily and high impact activities, Gait & Posture, 58, 201, 10.1016/j.gaitpost.2017.07.123
Rylander, 2014, A biomechanical comparison of anterior cruciate ligament suspensory fixation devices in a porcine cadaver model, Clin. Biomech., 29, 230, 10.1016/j.clinbiomech.2013.11.001
Seo, 2013, Clinical results comparing transtibial technique and outside in technique in single bundle anterior cruciate ligament reconstruction, Knee Surg Relat Res, 25, 133, 10.5792/ksrr.2013.25.3.133
Serpas, 2002, Forward-dynamics simulation of anterior cruciate ligament forces developed during isokinetic dynamometry, Comput Methods Biomech Biomed Engin, 5, 33, 10.1080/1025584021000001614
Shelburne, 2004, Pattern of anterior cruciate ligament force in normal walking, J Biomec, 37, 797, 10.1016/j.jbiomech.2003.10.010
Smith, 2018, Adjustable- versus fixed-loop devices for femoral fixation in ACL reconstruction. An in vitro full-construct biomechanical study of surgical technique–based tibial fixation and graft preparation, Orthop J Sports Med, 6, 10.1177/2325967118768743
Toutoungi, 2000, Cruciate ligament forces in the human knee during rehabilitation exercises, Clin. Biomech., 15, 176, 10.1016/S0268-0033(99)00063-7