Đánh giá sự khác biệt giữa hàm lượng DNA của oocyst Cryptosporidium parvum nuôi cấy trong tế bào và oocyst tự do, cũng như tính phù hợp của chúng làm chuẩn DNA trong qPCR
Tóm tắt
Mặc dù có nhiều phương pháp hiện đại hơn, nhưng PCR định lượng (qPCR) vẫn có độ tái lập, nhạy cảm và tính đặc hiệu cao với thiết bị và chuyên môn dễ dàng có sẵn tại nhiều phòng thí nghiệm. Do đó, việc sử dụng qPCR trong nghiên cứu
Chúng tôi đã đánh giá bốn loại mẫu DNA được sử dụng để tạo ra các đường chuẩn trong các nghiên cứu sàng lọc thuốc liên quan đến loài
Các mẫu DNA từ oocyst nuôi cấy tế bào và huyền phù oocyst nguyên chất cho độ tuyến tính tốt hơn so với các chuẩn từ nuôi cấy tế bào, với các pha loãng 106 oocysts thể hiện các giá trị chu kỳ định lượng (Cq) tương tự với các giá trị thu được từ các pha loãng DNA mẫu 106 oocyst. Ngược lại, các oocyst ủ trong tế bào nuôi cấy cho thấy hàm lượng DNA cao hơn đáng kể so với oocyst treo tự do tương đương và mẫu DNA pha loãng từ cả oocyst nuôi cấy và oocyst treo tự do ở nhiều nồng độ khác nhau.
Từ khóa
#Cryptosporidium #qPCR #hàm lượng DNA #oocyst #nghiên cứu ký sinh trùngTài liệu tham khảo
Thomson S, Hamilton C, Hope J, Katzer F, Mabbott N, Morrison L, et al. Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Vet Res. 2017;48:42.
Bouwknegt M, Devleesschauwer B, Graham H, Robertson L, van der Giessen J. Prioritisation of food-borne parasites in Europe, 2016. Euro Surveill. 2016;23:17–00161.
Casemore D, Watkins J. Review of disinfection and associated studies on Cryptosporidium. 1998. http://dwi.defra.gov.uk/research/completed-research/reports/dwi0805.pdf. Accessed 10 Oct 2018.
Chalmers R, Giles M. Zoonotic cryptosporidiosis in the UK—challenges for control. J Appl Microbiol. 2010;109:1487–97.
Olias P, Dettwiler I, Hemphill A, Deplazes P, Steiner A, Meylan M. The significance of cryptosporidiosis for the health of calves in Switzerland. Schweiz Arch Tierhelkd. 2018;160:363–74.
Armson A, Meloni P, Reynoldson J, Thompson R. Assessment of drugs against Cryptosporidium parvum using a simple in vitro screening method. FEMS Microbiol Lett. 1999;178:227–33.
Rochelle P, Marshall M, Mead J, Johnson A, Korich D, Rosen J, et al. Comparison of in vitro cell culture and a mouse assay for measuring infectivity of Cryptosporidium parvum. J Appl Environ Microbiol. 2002;68:3809–17.
Shahiduzzaman M, Dyachenko V, Khalafalla R, Desouky A, Daugschies A. Effects of curcumin on Cryptosporidium parvum in vitro. Parasitol Res. 2009;105:1155–61.
Teichmann K, Kuliberda M, Schatzmayr G, Hadacek F, Joachim A. In vitro determination of anticryptosporidial activity of phytogenic extracts and compounds. Parasitol Res. 2012;111:231–40.
Gaur S, Kuhlenschmidt T, Kuhlenschmidt M, Andrade J. Effect of oregano essential oil and carvacrol on Cryptosporidium parvum infectivity in HCT-8 cells. Parasitol Int. 2018;67:170–5.
Hijjawi N, Meloni B, Ryan U, Thompson R. Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture. Int J Parasitol. 2001;31:1048–55.
Najdrowski M, Heckeroth A, Wackwitz C, Gawlowska S, Mackenstedt U, Kliemt D, et al. Development and validation of a cell culture based assay for in virto assessment of anticryptosporidial compounds. Parasitol Res. 2007;101:161–7.
Giovanni G, LeChevallier M. Quantitative-PCR assessment of Cryptosporidium parvum cell culture infection. Appl Environ Microbiol. 2005;71:1495–500.
King B, Keegan A, Robinson B, Monis P. Cryptosporidium cell culture infectivity assay design. Parasitology. 2011;138:671–81.
Current W, Haynes T. Complete development of Cryptosporidium in cell cultures. Science. 1984;224:603–5.
Karanis P. The truth about in vitro culture of Cryptosporidium species. Parasitology. 2018;145:855–64.
Hindsom B, Ness K, Masquelier D, Belgrader P, Heredia N, Makarewicz A, et al. High-throughput droplet digital PCR system for absolute quantification of DNA copy number. Anal Chem. 2011;83:8604–10.
Godiwala N, Vandewalle A, Ward H, Leav B. Quantification of in vitro and in vivo Cryptosporidium parvum infection by using real-time PCR. Appl Environ Microbiol. 2006;72:4484–8.
Yang R, Paparini A, Monis P, Ryan U. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Crptosporidium oocysts in faecal samples. Int J Parasitol. 2014;44:1105–13.
Hijjawi N, Estcourt A, Yang R, Monis P, Ryan U. Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Vet Parasitol. 2010;169:29–36.
Keegan A, Fanok S, Monis P, Saint C. Cell culture-Taqman PCR assay for evaluation of Cryptosporidium parvum disinfection. Appl Environ Microbiol. 2003;69:2505–11.
Garvey M, Farrell H, Cormican M, Rowan N. Investigations of the relationship between the use of in vitro cell culture-quantitative PCR and a mouse-based bioassay for evaluating critical factors affecting the disinfection performance of pulsed UV light for treating Cryptosporidium parvum oocysts in saline. J Microbiol Meth. 2010;80:267–73.
Koken E, Darnault J, Jacobson A, Powelson D, Hendrickson W. Quantification of Cryptosporidium parvum in natural soil matrices and soil solutions using qPCR. J Microbial Meth. 2013;92:135–44.
MacDonald L, Sargent K, Armson A, Thompson A, Reynoldson J. The development of a real-time quantitative-PCR method for characterisation of a Cryptosporidium parvum in vitro culturing system and assessment of drug efficacy. Mol Biochem Parasitol. 2002;121:279–82.
Shahiduzzaman M, Dyachenko V, Obwaller A, Unglaube S, Daugschies A. Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum. Vet Parasitol. 2009;162:271–7.
Shahiduzzaman M, Dyachenko V, Keidel J, Schäschke R, Daugschies A. Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions. Vet Parasitol. 2010;164:43–9.
Benamrouz S, Guyot K, Gazzola S, Mouray A, Chassat T, Delaire B, et al. Cryptosporidium parvum infection in SCID mice infected with only one oocyst: qPCR assessment of parasite replication in tissues and development of digestive cancer. PLoS ONE. 2012;7:e51232.
Leich G, He Q. Cryptosporidiosis—an overview. J Biomed Sci. 2011;25:1–16.
Borowski H, Thompson R, Armstrong T, Clode P. Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology. 2010;137:13–26.
Rutledge R, Côte C. Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res. 2003;31:e93.
Campbell A, Robertson L, Smith H. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl Environ Microbiol. 1992;58:3488–93.
Petersen H, Enemark H. Viability assessment of Cryptosporidium oocysts by vital dyes: dry mounts overestimate the number of “ghost” oocysts. Foodborne Pathog Dis. 2018;15:141–4.
Slifko T, Friedman D, Rose J, Jakubowski W. An in vitro method for detecting infectious Cryptosporidium oocysts with cell culture. Appl Environ Microbiol. 1997;63:3669–75.
Morgan U, Constantine C, Forbes D, Thompson A. Differentiation between human and animal isolates of Cryptosporidium parvum using rDNA sequencing and direct PCR analysis. J Parasitol. 1997;83:825–30.
Amman R, Binder B, Olsen R, Chislom R, Devereaux R, Stahl D. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.
BioRad. CFX Manager Version 31. Hercules: BioRad; 2019.
Bustin S, Benes V, Garson J, Hellemans J, Huggestt J, Kubista M, Mueller R, et al. The MIQE Guidelines: minimum information for publication of quantitative real-time PCR Experiments. Clin Chem. 2009;55:611–22.
R Core Team (2019). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.r-project.org/.
Mary C, Chapey E, Dutoit K, Guyot K, Hasseine L, Jeddl F, et al. Multicentric evaluation of a new real-time PCR assay for quantification of Cryptosporidium spp. and identification of Cryptosporidium parvum and Cryptosporidium hominis. J Clin Microbiol. 2013;51:2556–63.
Yang R, Murphy C, Song Y, Ng-Hublin J, Estcourt A, Hijjawi N, et al. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples. Exp Parasitol. 2013;135:142–7.
Leetz A, Sotiriadou I, Ongerth J, Karanis P. An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water samples. Parasitol Res. 2007;101:951–62.
Qiagen. QIAamp® DNA Mini and Blood Mini Handbook. Qiagen. 2016. https://www.qiagen.com/ch/resources/download.aspx?id=62a200d6-faf4-469b-b50f-2b59cf738962&lang=en. Accessed 31 July 2019.