Đánh giá tác động của biến đổi khí hậu lên lưu vực sông Gomti ở Ấn Độ dưới các kịch bản RCP khác nhau

Arabian Journal of Geosciences - Tập 14 - Trang 1-16 - 2021
Biswajit Das1, Sanjay K. Jain1, Praveen K. Thakur2, Surjeet Singh1
1National Institute of Hydrology, Roorkee, India
2Indian Institute of Remote Sensing, Dehradun, India

Tóm tắt

Biến đổi khí hậu có thể ảnh hưởng tiêu cực đến các yếu tố của cân bằng nước trong các lưu vực sông. Bài báo này nghiên cứu tác động của biến đổi khí hậu đến các thành phần khí hậu-thủy văn của lưu vực sông Gomti bằng mô hình thủy văn SWAT. Hiệu suất mô hình đã được đánh giá thông qua phân tích độ nhạy, hiệu chỉnh và xác thực. Trong giai đoạn hiệu chỉnh và xác thực, các giá trị hiệu quả Nash-Sutcliffe (NSE) và hệ số xác định (R2) lần lượt đã đạt 0.86, 0.87 và 0.79, 0.83. Qua phân tích độ nhạy, kết quả cho thấy rằng số liệu đường cong thoát nước SCS cho điều kiện độ ẩm trước đó II (CN2) là tham số nhạy cảm nhất, tiếp theo là độ dẫn thủy lực bão hòa (SOL_K) và sau đó là khả năng chứa nước của lớp đất (SOL_AWC) v.v. Để đánh giá tác động của biến đổi khí hậu trong tương lai lên các biến thủy văn, các mô hình khí hậu toàn cầu (GCM) MIROC-ESM, MIROC-ESM-CHEM, MIROC_MIROC5 và MOHC_HADGEM2_ES đã được áp dụng trong mô hình SWAT đã hiệu chỉnh dưới các kịch bản RCP 4.5 và RCP 8.5. Các xu hướng sau đã được quan sát sau khi áp dụng các kịch bản - nhiệt độ đang gia tăng dưới các kịch bản RCP 4.5 (8.5), gần cuối thế kỷ tăng + 0.24% (+ 0.65), giữa thế kỷ tăng + 2.8% (+ 4.62), và cuối thế kỷ tăng + 5.25% (+ 10.98), tương ứng. Lượng mưa đang giảm dưới RCP 4.5 (8.5) lần lượt là -29.17% (-29.65%), -28.69% (-28.88%), và -23.82% (-20.11%). Lượng bốc hơi nước (evapotranspiration) dưới RCP 4.5 (RCP 8.5) đang gia tăng lần lượt là + 3.62% (+ 3.95%), + 4.30% (+ 5.38%), và + 5.49% (+ 6.03%). Do đó, lưu lượng dòng chảy dưới RCP 4.5 (RCP 8.5) đang giảm lần lượt là -31.27% (-23.99%), -27.45% (-28.96%), và -24.30% (-18.03%) vào gần, giữa và cuối thế kỷ. Các phát hiện này sẽ hữu ích cho việc quản lý tài nguyên nước trong tương lai ở lưu vực sông Gomti.

Từ khóa

#biến đổi khí hậu #lưu vực sông Gomti #mô hình thủy văn #SWAT #các kịch bản RCP

Tài liệu tham khảo

Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333(2–4):413–430 Abbaspour KC, Johnson A, van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J 3:1340–1352 Abeysingha NS, Singh M, Sehgal VK, Khanna M, Pathak H (2015) Analysis of trends in streamflow and its linkages with rainfall and anthropogenic factors in Gomti River basin of North India. Theor Appl Climatol 108(12):2202–2212 Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large-area hydrologic modeling and assessment: part I. Model development. J American Water Resour Assoc 34(1):73–89 Beven KJ (2001) Dalton medal lecture: how far can we go in distributed hydrological modelling? Hydrol Earth Syst Sci 5(1):1–12 Carvalho-Santos C, Monteiro AT, Azevedo JC et al (2017) Climate change impacts on water resources and reservoir management: uncertainty and adaptation for a mountain catchment in northeast Portugal. Water ResourManag 31:3355–3370 Das B, Jain S, Singh S, Thakur P (2019) Evaluation of multisite performance of SWAT model in the Gomti River basin, India. Appl Water Sci 9:134. https://doi.org/10.1007/s13201-019-1013-x Deng HQ, Luo Y, Yao Y, Liu C (2013) Spring and summer precipitation changes from 1880 to 2011 and the future projections from CMIP5 models in the Yangtze River basin. China Quat Int 304:95–106 Gan R, Luo Y, Zuo Q, Sun L (2015) Effects of projected climate change on the glacier and runoff generation in the Naryn River basin, Central Asia. J Hydrol 523:240–251 Gao C, Liu L, Ma D, He K, Xu YP (2019) Assessing responses of hydrological processes to climate change over the southeastern Tibetan Plateau based on resampling of future climate scenarios. Sci Total Environ 664:737–752 IPCC (2000) Special report emissions scenarios: summary for policymakers. A Special Report of IPCC Working Group III. Published for the Intergovernmental Panel on Climate Change, p 21 IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The physical sciences basis contribution of working group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 966 IPCC (2007a) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The physical science basis: contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, 996 pp IPCC (2007b) In: Pachauri RK, Reisinger A (eds) Synthesis report: contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Geneva, 104 pp IPCC (2007c) In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change (2007): impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, 976pp IPCC (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge Kahsay KD, Pingale SM, Hatiye SD (2018) Impact of climate change on groundwater recharge and base flow in the sub-catchment of Tekeze basin. Ethiopia Groundwater Sustain Dev 6:121–133 Kumar N, Tischbein B, Kusche J et al (2017) Impact of climate change on water resources of upper Kharun catchment in Chhattisgarh, India. J HydrolReg Stud 13:189–207 Kushwaha, Akansha, Jain M K (2013) Hydrological simulation in a forest dominated watershed in Himalayan region using SWAT model. J Water Resour Manag 27:3005–3023. https://doi.org/10.1007/s11269-013-0329-9 Manaswi CM, Thawait A K (2014) Application of soil and water assessment tool for runoff modeling of Karam River Basin in Madhya Pradesh. IIJSET 3(5):529–532 Moriasi DN, Arnold JG, Van Liew MW et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900 Näschen K, Diekkrüger B, Leemhuis C, Seregina L, van der Linden R (2019) Impact of climate change on water resources in the Kilombero catchment in Tanzania. Water 11:859 Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR (2002) Soil and water assessment tool, user manual, version 2000. Grassland, Soil and Water Research Laboratory, Temple Neitsch SL et al (2005) Soil and water assessment tool—theoretical documentation, version 2005. Temple, Texas NOAA (2019) Carbon dioxide levels in atmosphere hit record high in May, US Department of Commerce. Available at https://www.noaa.gov/news/carbon-dioxide-levels-in-atmosphere-hit-record-high-in-may Ogata T et al (2014) Projected future changes in the Asian monsoon: a comparison of CMIP3 and CMIP5 model results. J Meteorol Soc Jpn 92(3):207–225 Pandey BK, Khare D, Kawasaki A, Mishra PK (2019) Climate change impact assessment on blue and green water by coupling of representative CMIP5 climate models with physical based hydrological model. Water ResourManag 33:141–158 Pant GB, Kumar R, Borgaonkar HP et al (1999) The Himalayan environment. New Age International (P) Ltd, New Delhi, pp 172–184 Parida B, Behera S, Bakimchandra O, Pandey A, Singh N (2017) Evaluation of satellite-derived rainfall estimates for an extreme rainfall event over Uttarakhand, Western Himalayas. Hydrology 4:22 Paul M, Negahban-Azar M (2018) Sensitivity and uncertainty analysis for streamflow prediction using multiple optimization algorithms and objective functions: San Joaquin Watershed. California Model Earth Syst Environ 4:1509–1525 Rai SK, Kumar S, Rai AK, Palsaniya DR (2014) Climate change, variability and rainfall probability for crop planning in few districts of Central India. Atmos Clim Sci 4:394–403 Reshmidevi TV, Kumar DN, Mehrotra R, Sharma A (2017) Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. J Hydrol 556:1192–1204 Rupa Kumar K, Kumar KK, Pant GB (1994) Diurnal asymmetry of surface temperature trends over India. Geophys Res Lett 21:677–680 Saharia AM, Sarma AK (2018) Future climate change impact evaluation on hydrologic processes in the Bharalu and Basistha basins using SWAT model. Nat Hazards 92:1463–1488 Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo SJ, Rojas M (2013) CMIP5 projected changes in the annual cycle of precipitation in monsoon regions.J. Clim. 26(19):7328–7351 Shahvari N, Khalilian S, Mosavi SH, Mortazavi SA (2019) Assessing climate changeimpacts on water resources and crop yield: a case study of Varamin plain basin. IranEnviron Monit Assess 191(3):134. https://doi.org/10.1007/s10661-019-7266-x Sharannya TM, Mudbhatkal A, Mahesha A (2018) Assessing climate change impacts on river hydrology—a case study in the Western Ghats of India. Indian Academy of Sciences 78:1–11 Shiferaw H, Gebremedhin A, Gebretsadkan T, Zenebe A (2018) Modelling hydrological response under climate change scenarios using SWAT model: the case of Ilala watershed, northern Ethiopia. Model Earth Syst Environ 4:437–449 Siegfried T, Bernauer T, Guiennet R, Sellars S, Robertson A, Mankin J, Bauer-Gottwein P, Yakovlev A (2012) Will climate change exacerbate water stress in Central Asia? Clim Change 112:881–899 Singh N, Sontakke NA (2002) On climatic fluctuations and environmental changes of the indo-Gangetic Plains. India Clim Change 52(3):287–313. https://doi.org/10.1023/A:1013772505484 Singh V, Bankar N, Salunkhe SS, Bera AK, Sharma JR (2013) Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP. Curr Sci 104(9):1187–1199 Sperber K et al (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs CMIP3 simulations of the late 20th century. Clim Dynam 41(9–10):2711–2744 Su FG, Duan XL, Chen DL, Hao ZC, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208 Subash N, Sikka AK (2014) Trend analysis of rainfall and temperature and its relationship over India. Theor. Appl. Climatol 117(3):449–462. https://doi.org/10.1007/s00704-013-1015-9 Unger-Shayesteh K, Vorogushyn S, Merz B, Frede HG (2013) Introduction to “Water in Central Asia—perspectives under global change”. Glob and Planetary Change 110:1–3. https://doi.org/10.1016/j.gloplacha.2013.09.016 Wang L, Chen W (2014) A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int J Climatol 34(6):2059–2078 Yan R, Cai Y, Li C, Wang X, Liu Q (2019) Hydrological responses to climate and land use changes in a watershed of the Loess Plateau, China. Sustainability 11:1443 Zhang S, Li Z, Lin X, Zhang C (2019) Assessment of climate change and associated vegetation cover change on watershed-scale runoff and sediment yield. Water 11:1373 Zhou BT, Wen QH, Xu Y, Song LC, Zhang XB (2014) Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 27(17):6591–6611 Zhu X, Zhang C, Qi W, Cai W, Zhao X, Wang X (2018) Multiple climate change scenarios and runoff response in Biliu River. Water 10:126