Assessment of apolipoprotein B/apolipoprotein A-I ratio in non-ST segment elevation acute coronary syndrome patients

Haitham Galal1, Ayman Samir1, Mohamed Shehata1
1Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt

Tóm tắt

Abstract Background

The apolipoprotein B/apolipoprotein A-I ratio was shown to be strongly related to the risk of myocardial infarction in several large-scale studies. The current study aimed at exploring the diagnostic and short-term prognostic values of apolipoprotein B/apolipoprotein A-I ratio in patients presenting with non-ST segment elevation acute coronary syndrome. One hundred patients with non-ST segment elevation acute coronary syndrome were prospectively enrolled, in addition to a matched group of 100 patients with chronic stable angina. Serum levels of total cholesterol, low-density lipoprotein, high-density lipoprotein, triglycerides, and apolipoproteins B and A-I were quantified in both groups. Patients with non-ST segment elevation acute coronary syndrome underwent coronary angiography.

Results

The mean age of the study population was 57 ± 6 years, 65% being males. The non-ST segment elevation acute coronary syndrome group showed significantly unfavorable lipid profile parameters, including apolipoprotein B/apolipoprotein A-I ratio. Higher apolipoprotein B/apolipoprotein A-I ratio was associated with more coronaries showing significant stenosis and more complex lesion morphology. Receiver operating characteristic curve analysis reached an optimal cut-off value of 0.93 for diagnosis of non-ST segment elevation acute coronary syndrome (sensitivity 70% and specificity 88%) and 0.82 for predicting the presence of multi-vessel disease (sensitivity 90% and specificity 97%).

Conclusion

Apolipoprotein B/apolipoprotein A-I ratio is a useful tool of risk assessment in patients presenting with non-ST segment elevation acute coronary syndrome including prediction of coronary multivessel affection.

Apolipoprotein B/apolipoprotein A-I ratio was shown to be strongly related to risk of myocardial infarction. Higher ratios of apolipoprotein B/apolipoprotein A-I were recorded in NSTE-ACS patients (versus stable angina patients). Higher apolipoprotein B/apolipoprotein A-I ratios were associated with more diseased coronaries and complex lesions. Apolipoprotein B/apolipoprotein A-I ratio is a useful tool for acute risk assessment in cardiac ischemic patients.

Từ khóa


Tài liệu tham khảo

Beisiegel U (1998) Lipoprotein metabolism. Eur Heart J 19(Suppl A):S20–S23

Frank PG, Marcel YL (2000) Apolipoprotein A-I: structure-function relationships. J Lipid Res 41:853–872

Packard CJ, Shepherd J (1997) Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol 17:3542–3556

Rifai N, Bachorik PS, Alberts JJ (1999) Lipids, lipoproteins, and apolipoproteins. In: Burtis CA, Ashwood ER (eds) Tietz - textbook of clinical chemistry, 3rd edn. Saunders, Philadelphia, pp 809–861

Walldius G, Jungner I (2006) The apoB/apoA-I ratio: a strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy – a review of the evidence. J Intern Med 259:493–519

McQueen MJ, Hawken S, Wang X, INTERHEART Study Investigators (2008) Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet 372:224–233

Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E (2001) High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 358:2026–2033

Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L, INTERHEART Study Investigators (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364:937–952

Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, Collins R, Thompson SG, Danesh J (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302:1993–2000

Sniderman AD, Furberg CD, Keech A, Roeters van Lennep JE, Frohlich J, Jungner I, Walldius G (2003) Apolipoproteins versus lipids as indices of coronary risk and as targets for statin treatment. Lancet 361:777–780

Pfohl M, Schreiber I, Liebich HM, Häring HU, Hoffmeister HM (1999) Upregulation of cholesterol synthesis after acute myocardial infarction–is cholesterol a positive acute phase reactant? Atherosclerosis 142:389–393

Anderson JL, Adams CD, Antman EM et al (2013) for American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non–ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 127(23):e663–e828

American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

Knudsen AS, Darwish AZ, NØrgaard A, Gøtzsche O, Thygesen K (1998) Time course of myocardial viability after acute myocardial infarction: an echocardiographic study. Am Heart J 135:51–57

Smith SC Jr, Dove JT, Jacobs AK, Kennedy JW, Kereiakes D, Kern MJ, et al. ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines)-executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the Society for Cardiac Angiography and Interventions. Circulation. 2001; 103:3019–41.

Krintus M, Kozinski M, Stefanska A, Sawicki M, Obonska K, Fabiszak T, Kubica J, Sypniewska G (2012) Value of C-reactive protein as a risk factor for acute coronary syndrome: a comparison with apolipoprotein concentrations and lipid profile. Mediators Inflamm 2012:419804

Vaverkova H, Karasek D, Novotny D, Jackuliakova D, Lukes J, Halenka M, Frohlich J (2009) Apolipoprotein B versus LDL-cholesterol: association with other risk factors for atherosclerosis. Clin Biochem 42:1246–1251

Sypniewska G, Bergmann K, Krintus M. How do apolipoproteins ApoB and ApoA-I perform in patients with acute coronary syndromes. Journal of Medical Biochemistry De Gruyter Open Sp. z o.o.; 30(3). Available from: https://doi.org/10.2478/v10011-011-0022-6.

Marcovina SM, Alberts JJ, Henderson LO, Hannon WH (1993) International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. III. Comparability of apolipoprotein A-I values by use of international reference material. Clin Chem 39:773–781

Marcovina S, Packard J (2006) Measurement and meaning of apolipoprotein AI and apolipoprotein B plasma levels. J Intern Med 259:437–446

Talmud PJ, Hawe E, Miller GJ, Humphries SE (2002) Nonfasting apolipoprotein B and triglyceride levels as a useful predictor of coronary heart disease risk in middle-aged UK men. Arterioscler Thromb Vasc Biol 22:1918–1923

Tani S, Nagao K, Anazawa T, Kawamata H, Furuya S, Takahashi H, Iida K, Matsumoto M, Washio T, Kumabe N, Hirayama A (2010) Relation of change in apolipoprotein B/apolipoprotein A-I ratio to coronary plaque regression after Pravastatin treatment in patients with coronary artery disease. Am J Cardiol 105:144–148

Meisinger C, Loewel H, Mraz W, Koenig W (2005) Prognostic value of apolipoprotein B and A-I in the prediction of myocardial infarction in middle-aged men and women: results from the MONICA/KORA Augsburg cohort study. Eur Heart J 26:271–278

Westerveld HT, van Lennep JE, van Lennep HW, Liem AH, de Boo JA, van der Schouw YT, Erkelens DW (1998) Apolipoprotein B and coronary artery disease in women: a cross-sectional study in women undergoing their first coronary angiography. Arterioscler Thromb Vasc Biol 18:1101–1107

Luc G, Bard JM, Ferrières J, Evans A, Amouyel P, Arveiler D, Fruchart JC, Ducimetière P (2002) Value of HDL cholesterol, apolipoprotein A-I, lipoprotein A-I, and lipoprotein A-I/A-II in prediction of coronary heart disease. The PRIME Study. Arterioscler Thromb Vasc Biol 22:1155–1161

Walldius G, Jungner I, Aastveit AH, Holme I, Furberg CD, Sniderman AD (2004) The apoB/apoA-I ratio is better than cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clin Chem Lab Med 42:1355–1363

Walldius G, Jungner I (2004) Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. J Intern Med 255:188–205

Ballantyne CM, Andrews TC, Kramer JH, ACCESS study Group Atorvastatin Comparative cholesterol Efficacy and Safety Study. Correlation of non-high-density lipoprotein cholesterol with apolipoprotein B: effect of 5 hydroxymethylglutaryl coenzime A reductase inhibitors on non-high- density lipoprotein cholesterol levels. Am J Cardiol 2001; 88: 265-269.

Endreas M (2005) Statins and stroke. J Cereb Blood Flow Metab 25:1093–1110

Charlton-Menys V, Durrington P (2006) Apolipoproteins AI and B as therapeutic targets. J Intern Med 259:462–472

Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kornman KS, Witztum JL, Berger PB (2005) Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med 353:46–57