Assessment of TiO2 Nanoparticles on Maize Seedlings and Terrestrial Isopods Under Greenhouse Conditions

Journal of Soil Science and Plant Nutrition - Tập 21 - Trang 2214-2228 - 2021
Hermes Pérez-Hernández1, Esperanza Huerta-Lwanga1, Jorge Mendoza-Vega1, José David Álvarez-Solís2, Liliana Pampillón-González3, Fabián Fernández-Luqueño4
1Conacyt-El Colegio de La Frontera Sur (ECOSUR), Agroecología, Unidad Campeche, Lerma, Mexico
2CONACYT-El Colegio de la Frontera Sur, ECOSUR, San Cristóbal de Las Casas, Mexico
3División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
4Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, México

Tóm tắt

This study aims to evaluate the TiO2 nanoparticles (NPs) and soil type effect on Zea mays L. seedlings and to assess the effect of the TiO2 NPs retained in organic matter on terrestrial isopods (Armadillidium vulgare, Latreille). It was hypothesized that (i) the combined effect of soil pH and minerals, and the addition of TiO2 NPs harm maize plants, and (ii) increasing Ti’s content in organic matter (OM) causes mortality in the isopods. Under greenhouse conditions, the effects of TiO2 NPs (300 and 600 mg kg−1 dry soil) were assessed during 21 days in acid or alkaline soils, with an organic matter layer above the soil surface (3 cm). An inhibitory effect of TiO2 NPs on plant length and root size was clearly shown at 21 days in alkaline soil but not in acid soils. Besides, a higher amount of Ti was accumulated on maize tissues in alkaline soil than those grown on acid soil. An increase in TiO2 NPs caused higher Ti concentrations in the soil organic matter (SOM), which harmed the survival and weight of the terrestrial isopods when the OM is consumed. Isopods limit the consumption of NPs at high concentrations while the NPs leached toward soil deeper layers allowing a reduction in plant height and root size in Z. mays plants grown in alkaline soil. Nevertheless, further investigations on the effect of TiO2 NPs in the association of plants and terrestrial isopods in natural conditions are required.

Tài liệu tham khảo

Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2017) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29:1065–1073. https://doi.org/10.1002/ldr.2780 Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584. https://doi.org/10.1111/j.1365-3040.2009.01952.x Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A (2020) Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res 193:118–129. https://doi.org/10.1007/s12011-019-01706-6 Bouain N, Satbhai SB, Korte A, Saenchai C, Desbrosses G, Berthomieu P, Busch W, Rouached H (2018) Natural allelic variation of the AZI1 gene controls root growth under zinc-limiting condition. PLoS Genet 14:1007304. https://doi.org/10.1371/journal.pgen.1007304 Bouguerra S, Frikha Y, Pereira R, Ksibi M, Hentati O (2018) Titanium dioxide nanomaterial and copper binary mixture phytotoxicity in maize plants (Zea mays. L). In: Kallel A., Ksibi M., Ben Dhia H., Khélifi N (eds) Recent advances in environmental science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. https://doi.org/10.1007/978-3-319-70548-4_129 Boykov IN, Shuford E, Zhang B (2019) Nanoparticle titanium dioxide affects the growth and microRNA expression of switchgrass (Panicum virgatum). Genomics 111:450–456. https://doi.org/10.1016/j.ygeno.2018.03.002 Brami C, Glover AR, Butt KR, Lowe CN (2017) Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotox Environ Safe 141:64–69. https://doi.org/10.1016/j.ecoenv.2017.03.015 Cecchin I, Reddy KR, Thom A, Tessaro EF, Schnaid F (2017) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in Soils. Int Biodeter Biodegr 119:419–428. https://doi.org/10.1016/j.ibiod.2016.09.027 Chae Y, Kim S, An YJ (2016) In vivo visual evaluation of nanoparticle transfer in a three-species terrestrial food chain. Chemosphere 151:101–107. https://doi.org/10.1016/j.chemosphere.2016.02.075 Daryabeigi Zand A, Tabrizi AM, Heir AV (2020) Co-application of biochar and titanium dioxide nanoparticles to promote remediation of antimony from soil by Sorghum bicolor: metal uptake and plant response. Heliyon 6:e04669. https://doi.org/10.1016/j.heliyon.2020.e04669 de Santiago-Martín A, Constantin B, Guesdon G, Kagambega N, Sébastien R, Cloutier RG (2016) Bioavailability of engineered nanoparticles in soil systems. J Hazard Toxic Radioact Waste 20(1):B4015001 Delgado-Ramos GC (2014) Nanotechnology in Mexico: global trends and national implications for policy and regulatory issues. Technol Soc 37:4–15. https://doi.org/10.1016/j.techsoc.2013.09.005 Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266. https://doi.org/10.1016/j.envexpbot.2004.02.004 Deng Y, Petersen EJ, Challis KE, Rabb SA, Holbrook RD, Ranville JF, Xing B (2017) Multiple method analysis of TiO2 nanoparticle uptake in rice (Oryza sativa L.) plants. Environ Sci Technol 51:10615–10623. https://doi.org/10.1021/acs.est.7b01364 Diez-Ortiz M, Giska I, Groot M, Borgman E, Van Gestel C (2010) Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei. Chemosphere 80:1036–1104. https://doi.org/10.1016/j.chemosphere.2010.05.029 Dong B, Liu G, Zhou J, Wang J, Jin R (2020a) Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature. J Hazard Mater 383:121190. https://doi.org/10.1016/j.jhazmat.2019.121190 Dong B, Liu G, Zhou J, Wang J, Jin R, Zhang Y (2020b) Effects of reduced graphene oxide on humic acid-mediated transformation and environmental risks of silver ions. J Hazard Mater 385:121597. https://doi.org/10.1016/j.jhazmat.2019.121597 Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225. https://doi.org/10.1016/j.plaphy.2016.04.024 Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In Sustainable agriculture reviews. Springer International Publishing, 307–330. https://doi.org/10.1007/978-3-319-26777-7_7 Dubey AN, Chattopadhyaya N, Mandal N (2021) Variation in soil microbial population and soil enzymatic activities under zincated nanoclay polymer composites (ZNCPCs), nano-ZnO and Zn solubilizers in rice rhizosphere. Agric Res 10:21–31. https://doi.org/10.1007/s40003-020-00488-x Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23. https://doi.org/10.1016/j.btre.2017.03.002 Fang J, Shan XQ, Wen B, Lin JM, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109. https://doi.org/10.1016/j.envpol.2008.11.006 FAO (1974) Soil map of the world 1:5 000 000. Food and Agriculture Organization of the United Nations. Volume 1. Unesco – Paris Feizi M, Jalali M, Renella G (2018) Nanoparticles and modified clays influenced distribution of heavy metals fractions in a light-textured soil amended with sewage sludges. J Hazard Mater 343:208–219. https://doi.org/10.1016/j.jhazmat.2017.09.027 Flaccavento A, Pecoraro R, Scalisi EM, Messina G, Salvaggio A, Impellizzeri G, Lombardo BM, Brundo MV (2019) Morphostructural and immunohistochemical study for evaluation of nano-TiO2 toxicity in Armadillo officinalis Duméril, 1816 (Crustacea, Isopoda, Oniscidea). Microsc Res Tech 83:297–303. https://doi.org/10.1002/jemt.23413 Gao Y, Chen C, Wang D, Zhang L, Cai D, Wu Z (2020) TiO2/biochar with light-switchable wettability as herbicide safener and foliar fertilizer adhesive. ACS Sustain Chem Eng 8:1121–1128. https://doi.org/10.1021/acssuschemeng.9b06047 García-Gómez C, García S, Obrador AF, González D, Babín M, Fernández MD (2018) Effects of aged ZnO NPs and soil type on Zn availability, accumulation and toxicity to pea and beet in a greenhouse experiment. Ecotox Environ Safe 160:222–230. https://doi.org/10.1016/j.ecoenv.2018.05.019 Godet JP, Demuynck S, Waterlot C, Lemière S, Souty-Grosset C, Scheifler R, Douay F, Leprêtr A, Pruvot C (2011) Growth and metal accumulation in Porcellio scaber exposed to poplar litter from Cd-, Pb-, and Zn-contaminated sites. Ecotoxicol Environ Saf 74:451–458. https://doi.org/10.1016/j.ecoenv.2010.09.007 Gogos A, Moll J, Klingenfuss F, van der Heijden M, Irin F, Green MJ, Zenobi R, Bucheli TD (2016) Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. J Nanobiotechnol 14:40. https://doi.org/10.1186/s12951-016-0191-z Gogos A, Thalmann B, Voegelin A, Kaegi R (2017) Sulfidation kinetics of copper oxide nanoparticles. Environ Sci Nano 4:1733–1741. https://doi.org/10.1039/C7EN00309A Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020) Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep 10:912. https://doi.org/10.1038/s41598-020-57794-1 Goyal P, Basniwal RK (2017) Toxicity of nanoparticles and their impact on environment. In: Ghorbanpour M, Manika K, Varma A. (eds) Nanoscience and plant–soil systems. Soil Biology. Springer, Cham, vol 48, pp. 531–543. https://doi.org/10.1007/978-3-319-46835-8_21 He X, Fu P, Aker WG, Hwang HM (2018) Toxicity of engineered nanomaterials mediated by nano–bio–eco interactions. J Environ Sci Health C 36:21–42. https://doi.org/10.1080/10590501.2017.1418793 IARC (2006) Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Sci Publ:86 Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of ti from nanoparticles in crops and wetland plants. Int J Phytoremediation 15:42–153. https://doi.org/10.1080/15226514.2012.683209 Janmohammadi M, Amanzadeh T, Sabaghnia N, Dashti S (2016) Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agric Slov 107:265–276. https://doi.org/10.14720/aas.2016.107.2.01 Jemec A, Drobne D, Remškar M, Sepčić K, Tišler T (2008) Effects of ingested nanosized titanium dioxide on terrestrial isopods (Porcellio scaber). Environ Toxicol Chem 27:1904. https://doi.org/10.1897/08-036.1 Jemec A, Kos M, Drobne D, Koponen IK, Vukić J, Ferreira NGC, Loureiro S, McShane HVA (2016) In field conditions, commercial pigment grade TiO2 was not harmful to terrestrial isopods but reduced leaf litter fragmentation. Sci Total Environ 571:1128–1135. https://doi.org/10.1016/j.scitotenv.2016.07.107 Jesmer AH, Velicogna JR, Schwertfeger DM, Scroggins RP, Princz JI (2017) The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids-amended field soil. Environ Toxicol Chem 36:2756–2765. https://doi.org/10.1002/etc.3834 Kautz G, Topp W (2000) Acquisition of microbial communities and enhanced availability of soil nutrients by the isopod Porcellio scaber (Latr.)(Isopoda: Oniscidea). Biol Fertil Soils 31:102–107. https://doi.org/10.1007/s003740050631 Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70. https://doi.org/10.1021/ez400106t Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692. https://doi.org/10.1007/s11051-013-1692-4 Kumar A, Rakshit R, Bhowmik A, Mandal N, Das A, Adhikary S (2019) Nanoparticle-induced changes in resistance and resilience of sensitive microbial indicators towards heat stress in soil. Sustainability 11:862. https://doi.org/10.3390/su11030862 Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Sci Total Environ 431:197–208. https://doi.org/10.1016/j.scitotenv.2012.04.073 Larue C, Baratange C, Vantelon D, Khodja H, Surblé S, Elger A, Carrière M (2018) Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem. Sci Total Environ 630:609–617. https://doi.org/10.1016/j.scitotenv.2018.02.264 Lavelle P, Senapati B, Barros E (2003) Soil macrofauna. In: Schroth G, Sinclair F (eds) Trees, crops and soil fertility concepts and research methods. CABI Publishing Cromwell Press, Trowbridge, pp 303–324 Li J, Naeem MS, Wang X, Liu L, Chen C, Ma N, Zhang C (2015) Nano-TiO2 is not phytotoxic As revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response. PLoS One 10:e0143885. https://doi.org/10.1371/journal.pone.0143885 Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334. https://doi.org/10.1016/j.chemosphere.2016.05.083 Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W (2020) Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere 124794. https://doi.org/10.1016/j.chemosphere.2019.124794 Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:1–14. https://doi.org/10.1007/s11270-015-2738-2 Liu J, Zhou S, Gu P, Zhang T, Chen D, Li N, Lu J (2020) Conjugate Polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation. J Colloid Interface Sci 578:402–411. https://doi.org/10.1016/j.jcis.2020.06.014 Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6:41–59. https://doi.org/10.1039/c8en00645h Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Front Plant Sci 8:597. https://doi.org/10.3389/fpls.2017.00597 Malev O, Trebše P, Piecha M, Novak S, Budič B, Dramićanin MD, Drobne D (2017) Effects of CeO2 nanoparticles on terrestrial isopod Porcellio scaber: comparison of CeO2 biological potential with other nanoparticles. Arch Environ Contam Toxicol 72:303–311. https://doi.org/10.1007/s00244-017-0363-3 Mandal N, Datta SC, Manjaiah K, Dwivedi B, Kumar R, Aggarwal P (2019) Evaluation of zincated nanoclay polymer composite (ZCNPC) in releasing Zn, P and effect on soil enzyme activities in a wheat rhizosphere. Eur J Soil Sci 70:1164–1182. https://doi.org/10.1111/ejss.12860 McKee MS, Engelke M, Zhang X, Lesnikov E, Köser J, Eickhorst T, Filser J (2017) Collembola reproduction decreases with aging of silver nanoparticles in a sewage sludge-treated soil. Front Environ Sci 5:19. https://doi.org/10.3389/fenvs.2017.00019 Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684. https://doi.org/10.1016/j.envpol.2010.11.027 Merchant SS (2010) The elements of plant micronutrients. Plant Physiol 154:512–515. https://doi.org/10.1104/pp.110.161810 Moll J, Okupnik A, Gogos A, Knauer K, Bucheli TD, van der Heijden MGA, Widmer F (2016) Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont. PLoS One 11:e0155111. https://doi.org/10.1371/journal.pone.0155111 Novak S, Drobne D, Valant J, Pipan-Tkalec Ž, Pelicon P, Vavpetič P, Nataša G, Falnoga I, Mazej D, Remškar M (2012) Cell membrane integrity and internalization of ingested TiO2 nanoparticles by digestive gland cells of a terrestrial isopod. Environ Toxicol Chem 31:1083–1090. https://doi.org/10.1002/etc.1791 Patricia CS, Nerea GV, Erik U, Elena SM, Eider B, Darío DMW, Manu S (2017) Responses to silver nanoparticles and silver nitrate in a battery of biomarkers measured in coelomocytes and in target tissues of Eisenia fetida earthworms. Ecotox Environ Safe 141:57–63. https://doi.org/10.1016/j.ecoenv.2017.03.008 Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15. https://doi.org/10.1016/j.jhazmat.2010.11.020 Pérez-Hernández H, Fernández-Luqueño F, Huerta-Lwanga E, Mendoza-Vega J, Álvarez-Solís JD (2020) Effect of engineered nanoparticles on soil biota: do they improve the soil quality and crop production or jeopardize them? Land Degrad Dev 31:2213–2230. https://doi.org/10.1002/ldr.3595 Pérez-Moreno A, Sarabia-Castillo CR, Medina-Pérez G, Pérez-Hernández H, Roque-Puente J, González-Pozos S, Corlay-Chee L, Chamizo-Checa A, Campos-Montiel RG, Fernández-Luqueño F (2019) Nanomaterials modify the growth of crops and some characteristics of organisms from agricultural or forest soils: an experimental study at laboratory, greenhouse and land level. Mex J Biotech 4:29–49. https://doi.org/10.29267/mxjb.2019.4.4.29 Raffi MM, Husen A (2019) Impact of fabricated nanoparticles on the rhizospheric microorganisms and soil environment. In: Husen A, Iqbal M (eds) Nanomaterials and plant potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_21 Rafique R, Arshad M, Khokhar MF, Qazi IA, Hamza A, Virk N (2014) Growth response of wheat to titania nanoparticles application. NUST J Eng Sci 7:42–46. https://doi.org/10.24949/njes.v7i1.133 Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, Ghazaryan K, Movsesyan H, Barsova N (2019) ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health 42:147–158. https://doi.org/10.1007/s10653-019-00317-3 Rastogi A, Zivcak M, Sytar O, Kalaji MN, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:0078. https://doi.org/10.3389/fchem.2017.00078 Rathor G, Chopra N, Adhikari T (2017) Remediation of nickel ion from soil and water using nanoparticles of zero-valent iron (nZVI). Orient J Chem 3:1025–1029. https://doi.org/10.13005/ojc/330259 Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Sci Total Environ 568:470–479. https://doi.org/10.1016/j.scitotenv.2016.06.042 Reith F, Cornelis G (2017) Effect of soil properties on gold- and platinum nanoparticle mobility. Chem Geol 466:446–453. https://doi.org/10.1016/j.chemgeo.2017.06.033 Rodríguez-González V, Terashima C, Fujishima A (2019) Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. J Photochem Photobiol C Photochem Rev 40:49–67. https://doi.org/10.1016/j.jphotochemrev.2019.06.001 Romero-Freire A, Lofts S, Peinado FJM, van Gestel CAM (2017) Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei. Environ Toxicol Chem 36:137–146. https://doi.org/10.1002/etc.3512 Rutkowska B, Szulc W, Bomze K, Gozdowski D, Spychaj-Fabisiak E (2015) Soil factors affecting solubility and mobility of zinc in contaminated soils. Int J Environ Sci Technol 12:1687–1694. https://doi.org/10.1007/s13762-014-0546-7 Šebesta M, Nemček L, Urík M, Kolenčík M, Bujdoš M, Hagarová I, Matúš P (2020) Distribution of TiO2 nanoparticles in acidic and alkaline soil and their accumulation by Aspergillus niger. Agronomy 10:1833. https://doi.org/10.3390/agronomy10111833 Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, De Nolf W, De La Torre-Roche R, Pagano L, Pignatello J, Uchimiya M, Gardea-Torresdey J, White JC (2018) Bioaccumulation of CeO2 Nanoparticles by earthworms in biochar-amended soil: a synchrotron microspectroscopy study. J Agric Food Chem 66:6609–6618. https://doi.org/10.1021/acs.jafc.7b04612 Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22. https://doi.org/10.1016/j.soilbio.2015.08.019 Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723. https://doi.org/10.1007/s11356-015-4171-x Singh D, Kumar A (2020) Understanding the effect of the interaction of nanoparticles with roots on the uptake in plants. In: Dasgupta N, Ranjan S, Lichtfouse E (eds) Environmental nanotechnology volume 3. Environmental Chemistry for a Sustainable World. Springer, Cham, vol 27. https://doi.org/10.1007/978-3-030-26672-1_9 Tafazoli M, Hojjati SM, Biparva P, Kooch Y, Lamersdorf N (2017) Reduction of soil heavy metal bioavailability by nanoparticles and cellulosic wastes improved the biomass of tree seedlings. J Plant Nutr Soil Sc 180:683–693. https://doi.org/10.1002/jpln.201700204 Tan W, Du W, Barrios AC, Armendariz R, Zuverza-Mena N, Ji Z, Chang CH, Zink JI, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2017) Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environ Pollut 222:64–72. https://doi.org/10.1016/j.envpol.2017.01.002 Terekhova V, Gladkova M, Milanovskiy E, Kydralieva K (2017) Engineered nanomaterials’ effects on soil properties: problems and advances in investigation. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems. Soil Biology. Springer, Cham, vol 48. https://doi.org/10.1007/978-3-319-46835-8_4 Topuz E, van Gestel CA (2017) The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus. Ecotox Environ Saf 144:330–337. https://doi.org/10.1016/j.ecoenv.2017.06.037 Tourinho PS, van Gestel CA, Lofts S, Soares AM, Loureiro S (2013) Influence of soil pH on the toxicity of zinc oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus. Environ Toxicol Chem 32:2808–2815. https://doi.org/10.1002/etc.2369 Tourinho PS, van Gestel CAM, Jurkschat K, Soares AMVM, Loureiro S (2015) Effects of soil and dietary exposures to Ag nanoparticles and AgNO3 in the terrestrial isopod Porcellionides pruinosus. Environ Pollut 205:170–177. https://doi.org/10.1016/j.envpol.2015.05.044 ul Hassan Z, Ali S, Rizwan M, Hussain A, Akbar Z, Rasool N, Abbas F (2017) Role of zinc in alleviating heavy metal stress. In: Naeem M, Ansari A, Gill S (eds) Essential plant nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_14 Valant J, Drobne D, Novak S (2012) Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods. Chemosphere 87:19–25. https://doi.org/10.1016/j.chemosphere.2011.11.047 Vijver MG, Vink JP, Jager T, Van Straalen NM, Wolterbeek HT, Van Gestel CAM (2006) Kinetics of Zn and Cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and/or food. Soil Biol Biochem 38:1554–1563. https://doi.org/10.1016/j.soilbio.2005.11.006 Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D (2016) Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ Pollut 210:338–345. https://doi.org/10.1016/j.envpol.2016.01.028 Wu S, Wang F, Li Q, Wang J, Zhou Y, Duan N, Niazi S, Wang Z (2020) Photocatalysis and degradation products identification of deoxynivalenol in wheat using upconversion nanoparticles@TiO2 composite. Food Chem 323:126823. https://doi.org/10.1016/j.foodchem.2020.126823 Wu X, Hu J, Wu F, Zhang X, Wang B, Yang Y, Wang X (2021) Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): a mechanistic study. J Hazard Mater 124047. https://doi.org/10.1016/j.jhazmat.2020.124047 Zahra Z, Arshad M, Rafique R, Mahmood A, Habib A, Qazi IA, Khan SA (2015) Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. J Agric Food Chem 63:6876–6882. https://doi.org/10.1021/acs.jafc.5b01611 Zahra Z, Waseem N, Zahra R, Lee H, Badshah MA, Mehmood A, Choi HK, Arshad M (2017) Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agric Food Chem 65:5598–5606. https://doi.org/10.1021/acs.jafc.7b01843 Zahra Z, Ali MA, Parveen A, Kim E, Khokhar MF, Baig S, Hina K, Choi H-K, Arshad M (2019) Exposure–response of wheat cultivars to TiO2 nanoparticles in contrasted soils. Soil Sediment Contam 28:184–199. https://doi.org/10.1080/15320383.2018.1561650 Zhang W, Long J, Geng J, Li J, Wei Z (2020) Impact of titanium dioxide nanoparticles on Cd phytotoxicity and bioaccumulation in Rice (Oryza sativa L.). Int J Environ Res Public Health 17:2979. https://doi.org/10.3390/ijerph17092979 Zhao H, Wu L, Chai T, Zhang Y, Tan J, Ma S (2012) The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. J Plant Physiol 169:1243–1252. https://doi.org/10.1016/j.jplph.2012.04.016 Zhao L, Zhang H, White J, Chen X, Li H, Qu X, Ji R (2019) Metabolomics reveal that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathway. Environ Sci Nano 6:1716–1727. https://doi.org/10.1039/C9EN00137A Zidar P, Kos M, Ilič E, Marolt G, Drobne D, Jemec Kokalj A (2019) Avoidance behaviour of isopods (Porcellio scaber) exposed to food or soil contaminated with Ag- and CeO2- nanoparticles. Appl Soil Ecol 141:69–78. https://doi.org/10.1016/j.apsoil.2019.05.011 Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, Lopez-Moreno ML, Komarek M, Peralta-Videa JR, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-a review. Plant Physiol Biochem 110:236–264. https://doi.org/10.1016/j.plaphy.2016.05.037