Assessment of Changes in Some Biochemical Traits and Proteomic Profile of UCB-1 Pistachio Rootstock Leaf under Salinity Stress

Journal of Plant Growth Regulation - Tập 39 - Trang 608-630 - 2019
Kiarash Jamshidi Goharrizi1, Amin Baghizadeh2, Mansour Kalantar1, Foad Fatehi3
1Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
2Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
3Department of Agriculture, Payame Noor University (PNU), Tehran, Iran

Tóm tắt

University of California at Berkeley I or UCB-1 pistachio rootstock is propagated from the cross between Pistacia integerrima male × Pistacia atlantica female. So far, no report has been presented on the proteomic profile of Pistacia genus. In this research, 7-month-old UCB-1 rootstocks that were produced by tissue culture method and grown in pots containing 1/3 perlite, 1/3 clay and 1/3 sand were exposed to the three different concentrations of NaCl including 0, 100 and 200 mM for 30 days in the controlled conditions in the greenhouse. In the first step, under these three different concentrations of NaCl, the content of malondialdehyde and activities of guaiacol peroxidase, superoxide dismutase, catalase and peroxidase were evaluated. Malondialdehyde content increased up to 100 mM NaCl and then decreased. Activities of guaiacol peroxidase, superoxide dismutase and catalase increased with increasing concentration of NaCl, while peroxidase activity reduced. In the second step, 0 and 100 mM NaCl were selected to evaluate changes in the proteomic profile of this rootstock using MALDI-TOF/TOF method. In this study, ribonucleoside-diphosphate reductase small chain, polcalcin Phl p 7-like and golgin subfamily A member 5 were identified for the first time in response to salinity stress and have not been previously reported to be involved in the response of plant under abiotic stresses. Moreover, in this study, five unknown proteins were identified in UCB-1 pistachio under salinity stress.

Tài liệu tham khảo

Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of Mycorrhiza infected Pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169(7):704–709. https://doi.org/10.1016/j.jplph.2012.01.014 Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5(4):369–374. https://doi.org/10.4161/psb.5.4.10873 Aebi H (1984) Catalase in vitro. In: Methods in enzymology, vol 105. Elsevier, New York, pp 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 Agrawal GK, Pedreschi R, Barkla BJ, Bindschedler LV, Cramer R, Sarkar A, Renaut J, Job D, Rakwal R (2012) Translational plant proteomics: A perspective. J Proteomics 75(15):4588–4601. https://doi.org/10.1016/j.jprot.2012.03.055 Ahmad R, Ferguson L, Southwick SM (2005) Molecular marker analyses of pistachio rootstocks by simple sequence repeats and sequence-related amplified polymorphisms. J Hortic Sci Biotechnol 80(3):382–386. https://doi.org/10.1080/14620316.2005.11511948 Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S, Tran L-SP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347–347. https://doi.org/10.3389/fpls.2016.00347 Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Egamberdieva D, Bhardwaj R, Ashraf M (2017) Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. J Plant Interact 12(1):429–437. https://doi.org/10.1080/17429145.2017.1385867 Ahmad P, Abass Ahanger M, Nasser Alyemeni M, Wijaya L, Alam P, Ashraf M (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13(1):64–72. https://doi.org/10.1080/17429145.2017.1420830 Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2019) Silicon (Si) supplementation alleviates NaCl toxicity in Mung Bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul 38(1):70–82. https://doi.org/10.1007/s00344-018-9810-2 Akbari M, Mahna N, Ramesh K, Bandehagh A, Mazzuca S (2018) Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity. Protoplasma. https://doi.org/10.1007/s00709-018-1235-z Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. https://doi.org/10.1146/annurev.arplant.50.1.601 Ashoub A, Beckhaus T, Berberich T, Karas M, Bruggemann W (2013) Comparative analysis of barley leaf proteome as affected by drought stress. Planta 237(3):771–781. https://doi.org/10.1007/s00425-012-1798-4 Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006 Bandurska H, Niedziela J, Pietrowska-Borek M, Nuc K, Chadzinikolau T, Radzikowska D (2017) Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiol Biochem (PPB) 118:427–437. https://doi.org/10.1016/j.plaphy.2017.07.006 Bano S, Ashraf M, Akram NA (2014) Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). J Plant Interact 9(1):324–329. https://doi.org/10.1080/17429145.2013.832426 Barkla Bronwyn J, Vera-Estrella R, Pantoja O (2013) Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 13(12–13):1801–1815. https://doi.org/10.1002/pmic.201200401 Beckers GJM, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10(4):425–431. https://doi.org/10.1016/j.pbi.2007.06.002 Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201. https://doi.org/10.1016/j.jplph.2014.12.014 Bhat JY, Miličić G, Thieulin-Pardo G, Bracher A, Maxwell A, Ciniawsky S, Mueller-Cajar O, Engen JR, Hartl FU, Wendler P (2017) Mechanism of enzyme repair by the AAA + chaperone Rubisco activase. Mol Cell 67(5):744–756.e746. https://doi.org/10.1016/j.molcel.2017.07.004 Bohnert HJ, Sheveleva E (1998) Plant stress adaptations–making metabolism move. Curr Opin Plant Biol 1(3):267–274. https://doi.org/10.1016/S1369-5266(98)80115-5 Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32(1):191–222. https://doi.org/10.1007/BF00039383 Bozorgi M, Memariani Z, Mobli M, Salehi Surmaghi MH, Shams-Ardekani MR, Rahimi R (2013) Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. Sci World J 2013:219815. https://doi.org/10.1155/2013/219815 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Budak H, Akpinar BA, Unver T, Turktas M (2013) Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol Biol 83(1–2):89–103. https://doi.org/10.1007/s11103-013-0024-5 Capriotti AL, Borrelli GM, Colapicchioni V, Papa R, Piovesana S, Samperi R, Stampachiacchiere S, Lagana A (2014) Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions. Anal Bioanal Chem 406(5):1423–1435. https://doi.org/10.1007/s00216-013-7549-y Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viégas RA, Silveira JAG (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytol 163(3):563–571. https://doi.org/10.1111/j.1469-8137.2004.01139.x Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, Finnegan EJ, Turnbull C, Pogson BJ (2009) Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell 21(1):39–53. https://doi.org/10.1105/tpc.108.063131 Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22(1):27–34. https://doi.org/10.1007/s13562-012-0107-4 Chelli-Chaabouni A, Mosbah AB, Maalej M, Gargouri K, Gargouri-Bouzid R, Drira N (2010) In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf. Environ Exp Bot 69(3):302–312. https://doi.org/10.1016/j.envexpbot.2010.05.010 Chen SL, Kao CH (1995) Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regul 17(1):67–71. https://doi.org/10.1007/BF00024497 Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot 60(7):2005–2019. https://doi.org/10.1093/jxb/erp075 Colla G, Rouphael Y, Cardarelli M, Temperini O, Rea E, Salerno A, Pierandrei F (2006) Influence of grafting on yield and fruit quality of pepper (Capsicum annuum L.) grown under greenhouse conditions. In: IV International symposium on seed, transplant and stand establishment of horticultural crops; translating seed and seedling, vol 782, pp 359–364. https://doi.org/10.17660/actahortic.2008.782.45 Cramer GR (2002) Sodium-calcium interactions under salinity stress. In: Läuchli A, Lüttge U (eds) Salinity: environment—plants—molecules. Springer, Dordrecht, pp 205–227. https://doi.org/10.1007/0-306-48155-3_10 Cruz RT, Jordan WR, Drew MC (1992) Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 99(1):203–212. https://doi.org/10.1104/pp.99.1.203 Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57(5):1045–1058. https://doi.org/10.1093/jxb/erj102 Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem (PPB) 53:6–18. https://doi.org/10.1016/j.plaphy.2012.01.002 Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128(2):379–387. https://doi.org/10.1104/pp.010524 Demmig-Adams B, Adams WW 3rd (2002) Antioxidants in photosynthesis and human nutrition. Science 298(5601):2149–2153. https://doi.org/10.1126/science.1078002 Deruere J, Romer S, d’Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6(1):119–133. https://doi.org/10.1105/tpc.6.1.119 Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32(1):79–91. https://doi.org/10.1093/jxb/32.1.79 Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135(1):1–9. https://doi.org/10.1016/S0168-9452(98)00025-9 Epstein L, Beede R, Kaur S, Ferguson L (2004) Rootstock effects on pistachio trees grown in Verticillium dahliae-infested soil. Phytopathology 94(4):388–395. https://doi.org/10.1094/phyto.2004.94.4.388 Espelie KE, Franceschi VR, Kolattukudy PE (1986) Immunocytochemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue. Plant Physiol 81(2):487–492 Estan MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56(412):703–712. https://doi.org/10.1093/jxb/eri027 Fan M, Bie Z, Krumbein A, Schwarz D (2011) Salinity stress in tomatoes can be alleviated by grafting and potassium depending on the rootstock and K-concentration employed. Sci Hortic 130(3):615–623. https://doi.org/10.1016/j.scienta.2011.08.018 Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC (2012) The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39(5):6387–6397. https://doi.org/10.1007/s11033-012-1460-z Ferguson L, Poss J, Grattan S, Grieve C, Wang D, Wilson C, Donovan T, Chao C-T (2002) Pistachio rootstocks influence scion growth and ion relations under salinity and boron stress. J Am Soc Hortic Sci 127(2):194–199 Flores FB, Sanchez-Bel P, Estañ MT, Martinez-Rodriguez MM, Moyano E, Morales B, Campos JF, Garcia-Abellán JO, Egea MI, Fernández-Garcia N, Romojaro F, Bolarín MC (2010) The effectiveness of grafting to improve tomato fruit quality. Sci Hortic 125(3):211–217. https://doi.org/10.1016/j.scienta.2010.03.026 Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93. https://doi.org/10.1104/pp.110.166181 Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100(2):241–254. https://doi.org/10.1111/j.1399-3054.1997.tb04780.x Fuentes P, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange C (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79(1–2):47–59. https://doi.org/10.1007/s11103-012-9893-2 Gardiner MG, Cleland R (1974) Peroxidase changes during the cessation of elongation in Pisum sativum stems. Phytochemistry. https://doi.org/10.1016/0031-9422(74)80081-6 Genc Y, Mcdonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30(11):1486–1498. https://doi.org/10.1111/j.1365-3040.2007.01726.x Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+ -binding helix-loop-helix EF-hand motifs. Biochem J 405(2):199–221. https://doi.org/10.1042/bj20070255 Gillingham AK, Pfeifer AC, Munro S, Drubin D (2002) CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a golgi membrane protein related to giantin. Mol Biol Cell 13(11):3761–3774. https://doi.org/10.1091/mbc.e02-06-0349 Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359(3):509–525. https://doi.org/10.1016/j.jmb.2006.03.066 Grene R (2002) Oxidative stress and acclimation mechanisms in plants. Arabidopsis Book/American Society of Plant Biologists 1:e0036. https://doi.org/10.1199/tab.0036.1 Grote M, Westritschnig K, Valenta R (2008) Immunogold electron microscopic localization of the 2 EF-hand calcium-binding pollen allergen Phl p 7 and its homologues in pollens of grasses, weeds and trees. Int Arch Allergy Immunol 146(2):113–121. https://doi.org/10.1159/000113514 Guo B, Luan H, Lin S, Lv C, Zhang X, Xu R (2016) Comparative proteomic analysis of two barley cultivars (Hordeum vulgare L.) with contrasting grain protein content. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00542 Guo R, Qiao H, Zhao J, Wang X, Tu M, Guo C, Wan R, Li Z, Wang X (2018) The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana. Front Plant Sci 9:545–545. https://doi.org/10.3389/fpls.2018.00545 Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86(11–12):377–384. https://doi.org/10.1016/j.lfs.2009.12.015 Hajiboland R, Norouzi F, Poschenrieder C (2014) Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees 28(4):1065–1078. https://doi.org/10.1007/s00468-014-1018-x He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot 66(2):270–278. https://doi.org/10.1016/j.envexpbot.2009.02.007 Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1 Heidari M, Jamshidi P (2011) Effects of salinity and potassium application on antioxidant enzyme activities and physiological parameters in pearl millet. Agric Sci China 10(2):228–237. https://doi.org/10.1016/S1671-2927(09)60309-6 Hernandez JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115(2):251–257. https://doi.org/10.1034/j.1399-3054.2002.1150211.x HernÁNdez JA, Del RÍO LA, Sevilla F (1994) Salt stress-induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata (L.) Walp. N Phytol 126(1):37–44. https://doi.org/10.1111/j.1469-8137.1994.tb07527.x Hernández JA, Jiménez A, Mullineaux P, Sevilia F (2001) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23(8):853–862. https://doi.org/10.1046/j.1365-3040.2000.00602.x Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103(35):12987. https://doi.org/10.1073/pnas.0604882103 Huang M, Zhou Z, Elledge SJ (1998) The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94(5):595–605. https://doi.org/10.1016/S0092-8674(00)81601-3 Huang Y, Bie ZL, Liu ZX, Zhen A, Jiao XR (2011) Improving cucumber photosynthetic capacity under NaCl stress by grafting onto two salt-tolerant pumpkin rootstocks. Biol Plant 55(2):285–290. https://doi.org/10.1007/s10535-011-0040-8 Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81(3):802–806. https://doi.org/10.1104/pp.81.3.802 Hüttner S, Strasser R (2012) Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front Plant Sci 3:67. https://doi.org/10.3389/fpls.2012.00067 Ichikawa M, Nakai Y, Arima K, Nishiyama S, Hirano T, Sato MH (2015) A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis. Plant Signal Behav 10(3):e990847–e990847. https://doi.org/10.4161/15592324.2014.990847 Iraki NM, Bressan RA, Hasegawa PM, Carpita NC (1989) Alteration of the physical and chemical structure of the primary cell wall of growth-limited plant cells adapted to osmotic stress. Plant Physiol 91(1):39–47 Jalali-e-Emam SMS, Alizadeh B, Zaefizadeh M, Zakarya RA, Khayatnezhad M (2011) Superoxide dismutase (SOD) activity in NaCl stress in salt-sensitive and salt-tolerance genotypes of Colza (Brassica napus L.). Middle East J Sci Res 7:7–11 Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53(378):2201–2206. https://doi.org/10.1093/jxb/erf079 Kang JS, Frank J, Kang CH, Kajiura H, Vikram M, Ueda A, Kim S, Bahk JD, Triplett B, Fujiyama K, Lee SY, von Schaewen A, Koiwa H (2008) Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc Natl Acad Sci USA 105(15):5933–5938. https://doi.org/10.1073/pnas.0800237105 Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim Ie S, Usui K (2005a) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26(23):4521–4539. https://doi.org/10.1002/elps.200500334 Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Seo YW, Choi KG, Yun SJ (2005b) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol 38(2):218–224 Kolberg M, Strand KR, Graff P, Andersson KK (2004) Structure, function, and mechanism of ribonucleotide reductases. Biochem Biophys Acta 1699(1–2):1–34. https://doi.org/10.1016/j.bbapap.2004.02.007 Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316. https://doi.org/10.1016/j.pbi.2007.04.011 Kretsinger RH, Wasserman RH (1980) Structure and evolution of calcium-modulated protein. Crit Rev Biochem 8(2):119–174. https://doi.org/10.3109/10409238009105467 Kumar S, Awasthi OP, Dubey AK, Pandey R, Sharma VK, Mishra AK, Sharma RM (2018) Root morphology and the effect of rootstocks on leaf nutrient acquisition of Kinnow mandarin (Citrus nobilis Loureiro × Citrus reticulata Blanco). J Hortic Sci Biotechnol 93(1):100–106. https://doi.org/10.1080/14620316.2017.1345333 Kwak S-S, Kim S-K, Lee M-S, Jung K-H, Park I-H, Liu J-R (1995) Acidic peroxidases from suspension-cultures of sweet potato. Phytochemistry 39(5):981–984. https://doi.org/10.1016/0031-9422(95)00098-R Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451(7180):835. https://doi.org/10.1038/nature06545 Lakra N, Kaur C, Anwar K, Singla-Pareek SL, Pareek A (2018) Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment. Plant Cell Environ 41(5):947–969. https://doi.org/10.1111/pce.12946 Latijnhouwers M, Xu X-M, Møller SG (2010) Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta 232(3):567–578. https://doi.org/10.1007/s00425-010-1192-z Ledesma A, Villalba M, Batanero E, Rodriguez R (1998) Molecular cloning and expression of active Ole e 3, a major allergen from olive-tree pollen and member of a novel family of Ca2 + -binding proteins (polcalcins) involved in allergy. Eur J Biochem 258(2):454–459. https://doi.org/10.1046/j.1432-1327.1998.2580454.x Lee T-M, Lin Y-H (1995) Changes in soluble and cell wall-bound peroxidase activities with growth in anoxia-treated rice (Oryza sativa L.) coleoptiles and roots. Plant Sci 106(1):1–7. https://doi.org/10.1016/0168-9452(94)04053-J Lee EK, Kwon M, Ko JH, Yi H, Hwang MG, Chang S, Cho MH (2004) Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol 134(1):528–538. https://doi.org/10.1104/pp.103.027045 Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153(2):716–727. https://doi.org/10.1104/pp.110.154617 Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103(47):18008–18013 Li X, Xing J, Gianfagna TJ, Janes HW (2002) Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits. Plant Sci 162(2):239–244. https://doi.org/10.1016/S0168-9452(01)00565-9 Li F, Tsfadia O, Wurtzel ET (2009) The phytoene synthase gene family in the grasses: subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signal Behav 4(3):208–211. https://doi.org/10.4161/psb.4.3.7798 Li W, Zhao F, Fang W, Xie D, Hou J, Yang X, Zhao Y, Tang Z, Nie L, Lv S (2015) Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front Plant Sci 6:732. https://doi.org/10.3389/fpls.2015.00732 Lindquist S, Craig E (1988) The heat-shock proteins. Annu Rev Genet 22(1):631–677. https://doi.org/10.1146/annurev.ge.22.120188.003215 Liu Z, Bie Z, Huang Y, Zhen A, Niu M, Lei B (2013) Rootstocks improve cucumber photosynthesis through nitrogen metabolism regulation under salt stress. Acta Physiol Plant 35(7):2259–2267. https://doi.org/10.1007/s11738-013-1262-5 Lounifi I, Arc E, Molassiotis A, Job D, Rajjou L, Tanou G (2013) Interplay between protein carbonylation and nitrosylation in plants. Proteomics 13(3–4):568–578. https://doi.org/10.1002/pmic.201200304 Lyytinen A, Mappes J, Lindström L (2012) Variation in Hsp70 levels after cold shock: signs of evolutionary responses to thermal selection among Leptinotarsa decemlineata populations. PLoS ONE 7(2):e31446. https://doi.org/10.1371/journal.pone.0031446 MalhÓ R, Camacho L, Moutinho A (2000) Signalling pathways in pollen tube growth and reorientation. Ann Bot 85:59–68. https://doi.org/10.1006/anbo.1999.0991 Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52(2):113–122. https://doi.org/10.1016/j.envexpbot.2004.01.009 Massai R, Remorini D, Tattini M (2004) Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations. Plant Soil 259(1):153–162. https://doi.org/10.1023/B:PLSO.0000020954.71828.13 McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055 Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378(3):203–206. https://doi.org/10.1016/0014-5793(95)01448-9 Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel ET (2011) A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Syst Biol 5:77. https://doi.org/10.1186/1752-0509-5-77 Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55(399):1105–1113. https://doi.org/10.1093/jxb/erh113 Miziorko HM (2000) Phosphoribulokinase: current perspectives on the structure/function basis for regulation and catalysis. Adv Enzymol Relat Areas Mol Biol 74:95–127. https://doi.org/10.1002/9780470123201.ch3 Moazzam Jazi M, Ghadirzadeh Khorzoghi E, Botanga C, Seyedi SM (2016) Identification of reference genes for quantitative gene expression studies in a non-model tree pistachio (Pistacia vera L.). PloS ONE 11(6):e0157467. https://doi.org/10.1371/journal.pone.0157467 Moazzzam Jazi M, Seyedi SM, Ebrahimie E, Ebrahimi M, De Moro G, Botanga C (2017) A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery. BMC Genomics 18(1):627. https://doi.org/10.1186/s12864-017-3989-7 Mohanta TK, Occhipinti A, Zebelo SA, Foti M, Fliegmann J, Bossi S, Maffei ME, Bertea CM (2012) Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS ONE 7(3):e32822. https://doi.org/10.1371/journal.pone.0032822 Moin M, Bakshi A, Saha A, Dutta M, Madhav SM, Kirti PB (2016) Rice ribosomal protein large subunit genes and their spatio-temporal and stress regulation. Front Plant Sci 7:1284. https://doi.org/10.3389/fpls.2016.01284 Molassiotis A, Fotopoulos V (2011) Oxidative and nitrosative signaling in plants: two branches in the same tree? Plant Signal Behav 6(2):210–214. https://doi.org/10.4161/psb.6.2.14878 Molassiotis AN, Sotiropoulos T, Tanou G, Kofidis G, Diamantidis G, Therios E (2006) Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biol Plant 50(1):61–68. https://doi.org/10.1007/s10535-005-0075-9 Molassiotis A, Tanou G, Filippou P, Fotopoulos V (2013) Proteomics in the fruit tree science arena: new insights into fruit defense, development, and ripening. Proteomics 13(12–13):1871–1884. https://doi.org/10.1002/pmic.201200428 Molassiotis A, Job D, Ziogas V, Tanou G (2016) Citrus plants: a model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00229 Moloi MJ, Mwenye OJ, Van der Merwe R (2016) Differential involvement of ascorbate and guaiacol peroxidases in soybean drought resistance. South Afr J Sci 112(9–10):1–4. https://doi.org/10.17159/sajs.2016/20160028 Moreau A, Yotov WV, Glorieux FH, St-Arnaud R (1998) Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol Cell Biol 18(3):1312–1321. https://doi.org/10.1128/mcb.18.3.1312 Morgan D, Epstein L, Ferguson L (1992) Verticillium wilt resistance in pistachio rootstock cultivars: assays and an assessment of two interspecific hybrids. Plant Dis 76(3):310–313. https://doi.org/10.1094/PD-76-0310 Moriana A, Memmi H, Centeno A, Martín-Palomo MJ, Corell M, Torrecillas A, Pérez-López D (2018) Influence of rootstock on pistachio (Pistacia vera L. cv Kerman) water relations. Agric Water Manag 202:263–270. https://doi.org/10.1016/j.agwat.2017.12.026 Mostek A, Börner A, Badowiec A, Weidner S (2015) Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. J Plant Physiol 174:166–176. https://doi.org/10.1016/j.jplph.2014.08.020 Moya JL, Primo-Millo E, Talon M (2002) Morphological factors determining salt tolerance in citrus seedlings: the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant Cell Environ 22(11):1425–1433. https://doi.org/10.1046/j.1365-3040.1999.00495.x Munro S (2011) The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a005256 Nazari M, Moosavi SS, Maleki M (2018) Morpho-physiological and proteomic responses of Aegilops tauschii to imposed moisture stress. Plant Physiol Biochem 132:445–452 Negrel J, Lherminier J (1987) Peroxidase-mediated integration of tyramine into xylem cell walls of tobacco leaves. Planta 172(4):494–501. https://doi.org/10.1007/BF00393865 Ngara R, Ndimba R, Borch-Jensen J, Jensen ON, Ndimba B (2012) Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J Proteomics 75(13):4139–4150. https://doi.org/10.1016/j.jprot.2012.05.038 Park C-J, Seo Y-S (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J 31(4):323–333. https://doi.org/10.5423/PPJ.RW.08.2015.0150 Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57(5):1109–1118. https://doi.org/10.1093/jxb/erj134 Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89(7):833–839. https://doi.org/10.1093/aob/mcf103 Passamani LZ, Barbosa RR, Reis RS, Heringer AS, Rangel PL, Santa-Catarina C, Grativol C, Veiga CFM, Souza-Filho GA, Silveira V (2017) Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots. PLoS ONE 12(4):e0176076. https://doi.org/10.1371/journal.pone.0176076 Penella C, Nebauer SG, Bautista AS, Lopez-Galarza S, Calatayud A (2014) Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses. J Plant Physiol 171(10):842–851. https://doi.org/10.1016/j.jplph.2014.01.013 Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics (MCP) 8(12):2676–2686. https://doi.org/10.1074/mcp.M900052-MCP200 Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X (2014) Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics 15(1):760. https://doi.org/10.1186/1471-2164-15-760 Pichersky E, Bernatzky R, Tanksley SD, Cashmore AR (1986) Evidence for selection as a mechanism in the concerted evolution of Lycopersicon esculentum (tomato) genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 83(11):3880–3884. https://doi.org/10.1073/pnas.83.11.3880 Plewa MJ, Smith SR, Wagner ED (1991) Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutat Res/Fund Mol Mech Mutagen 247(1):57–64. https://doi.org/10.1016/0027-5107(91)90033-K Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol 106(1):53–60. https://doi.org/10.1104/pp.106.1.53 Portis AR Jr (2003) Rubisco activase—Rubisco’s catalytic chaperone. Photosynth Res 75(1):11–27. https://doi.org/10.1023/a:1022458108678 Qu C-P, Xu Z-R, Liu G-J, Liu C, Li Y, Wei Z-G, Liu G-F (2010) Differential expression of copper-zinc superoxide dismutase gene of Polygonum sibiricum leaves, stems and underground stems, subjected to high-salt stress. Int J Mol Sci 11(12):5234–5245. https://doi.org/10.3390/ijms11125234 Rahnama H, Ebrahimzadeh H (2005) The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biol Plant 49(1):93–97. https://doi.org/10.1007/s10535-005-3097-4 Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13(1):73–82. https://doi.org/10.1080/17429145.2018.1424355 Raines CA (2011) Increasing photosynthetic carbon assimilation in C < sub > 3</sub > plants to improve crop yield: current and future strategies. Plant Physiol 155(1):36. https://doi.org/10.1104/pp.110.168559 Rezaee F, Lahouti M, Maleki M, Ganjeali A (2018) Comparative proteomics analysis of whitetop (Lepidium draba L.) seedlings in response to exogenous glucose. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.09.016 Rospert S, Dubaquié Y, Gautschi M (2002) Nascent-polypeptide-associated complex. Cell Mol Life Sci CMLS 59(10):1632–1639. https://doi.org/10.1007/PL00012490 Rozwadowski K, Zhao R, Jackman L, Huebert T, Burkhart WE, Hemmingsen SM, Greenwood J, Rothstein SJ (1999) Characterization and immunolocalization of a cytosolic calcium-binding protein from Brassica napus and Arabidopsis pollen. Plant Physiol 120(3):787–798. https://doi.org/10.1104/pp.120.3.787 Ruiz-Sola MÁ, Arbona V, Gómez-Cadenas A, Rodríguez-Concepción M, Rodríguez-Villalón A (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis. PLoS ONE 9(3):e90765. https://doi.org/10.1371/journal.pone.0090765 Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2(9):1131–1145. https://doi.org/10.1002/1615-9861(200209)2:9%3c1131:AID-PROT1131%3e3.0.CO;2-1 Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hortic 127(2):162–171. https://doi.org/10.1016/j.scienta.2010.09.016 Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2(6):282–291. https://doi.org/10.1007/s10142-002-0070-6 Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669. https://doi.org/10.1111/j.1399-3054.2007.01008.x Shahid MA, Balal RM, Khan N, Zotarelli L, Liu G, Ghazanfar MU, Rathinasabapathi B, Mattson NS, Martínez-Nicolas JJ, Garcia-Sanchez F (2018) Ploidy level of citrus rootstocks affects the carbon and nitrogen metabolism in the leaves of Chromium-stressed Kinnow mandarin plants. Environ Exp Bot 149:70–80. https://doi.org/10.1016/j.envexpbot.2018.02.010 Shi H, Chan Z-L (2014) AtHAP5A modulates freezing stress resistance in Arabidopsis independent of the CBF pathway. Plant Signal Behav 9(7):e29109–e29109. https://doi.org/10.4161/psb.29109 Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, Stange C (2018) Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. J Exp Bot 69(16):4113–4126. https://doi.org/10.1093/jxb/ery207 Singh VK, Mishra A, Haque I, Jha B (2016) A novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco. Sci Rep 6:31686. https://doi.org/10.1038/srep31686 Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891. https://doi.org/10.1038/nature02262 Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. N Phytol 125(1):27–58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19–19. https://doi.org/10.1186/1477-5956-8-19 Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16(6):13561–13578. https://doi.org/10.3390/ijms160613561 Srivastava AK, Bhargava P, Thapar R, Rai LC (2008) Salinity-induced physiological and proteomic changes in Anabaena doliolum. Environ Exp Bot 64(1):49–57. https://doi.org/10.1016/j.envexpbot.2007.12.012 Sup Yun H, Yi C, Kwon H, Kwon C (2013) Model for regulation of VAMP721/722-mediated secretion: growth vs. stress responses. Plant Signal Behav 8(11):e27116. https://doi.org/10.4161/psb.27116 Suphioglu C, Ferreira F, Knox RB (1997) Molecular cloning and immunological characterisation of Cyn d 7, a novel calcium-binding allergen from Bermuda grass pollen. FEBS Lett 402(2–3):167–172. https://doi.org/10.1016/S0014-5793(96)01520-7 Taïbi K, Taïbi F, Ait Abderrahim L, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South Afr J Bot 105:306–312. https://doi.org/10.1016/j.sajb.2016.03.011 Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60(5):795–804. https://doi.org/10.1111/j.1365-313X.2009.04000.x Tanou G, Job C, Belghazi M, Molassiotis A, Diamantidis G, Job D (2010) Proteomic signatures uncover hydrogen peroxide and nitric oxide cross-talk signaling network in citrus plants. J Proteome Res 9(11):5994–6006. https://doi.org/10.1021/pr100782h Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72(4):585–599. https://doi.org/10.1111/j.1365-313X.2012.05100.x Tezara W, Mitchell V, Driscoll S, Lawlor D (1999 ) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401(6756):914 Theodoulou FL (2000) Plant ABC transporters. Biochim Biophys Acta (BBA)—Biomembr 1465(1):79–103. https://doi.org/10.1016/S0005-2736(00)00132-2 Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71(4):391–411. https://doi.org/10.1016/j.jprot.2008.07.005 Tsokou A, Georgopoulou K, Melliou E, Magiatis P, Tsitsa E (2007) Composition and enantiomeric analysis of the essential oil of the fruits and the leaves of Pistacia vera from Greece. Molecules 12(6):1233–1239. https://doi.org/10.3390/12061233 Uarrota VG, Moresco R, Schmidt EC, Bouzon ZL, Nunes Eda C, Neubert Ede O, Peruch LA, Rocha M, Maraschin M (2016) The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration. Food Chem 197(Pt A):737–746. https://doi.org/10.1016/j.foodchem.2015.11.025 Uygur V, Yetisir H (2009) Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake watermelon under salt stress. J Plant Nutr 32(4):629–643. https://doi.org/10.1080/01904160802715448 Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Biol 42(1):579–620. https://doi.org/10.1146/annurev.pp.42.060191.003051 Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4(6):232–235. https://doi.org/10.1016/S1360-1385(99)01414-4 Wakeel A, Asif AR, Pitann B, Schubert S (2011) Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. J Plant Physiol 168(6):519–526. https://doi.org/10.1016/j.jplph.2010.08.016 Walker JE (1992) The NADH: ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25(3):253–324. https://doi.org/10.1017/S003358350000425X Wang C, Liu Z (2006) Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 18(2):350–365. https://doi.org/10.1105/tpc.105.037044 Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252. https://doi.org/10.1016/j.tplants.2004.03.006 Wang Z, Wang M, Liu L, Meng F (2013) Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Int J Mol Sci 14(10):20299–20325. https://doi.org/10.3390/ijms141020299 Welsch R, Wust F, Bar C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147(1):367–380. https://doi.org/10.1104/pp.108.117028 Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol 83(2):278–282 Witzel K, Matros A, Strickert M, Kaspar S, Peukert M, Mühling KH, Börner A, Mock H-P (2014) Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins. Mol Plant 7(2):336–355. https://doi.org/10.1093/mp/sst063 Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5(1):235–244. https://doi.org/10.1002/pmic.200400853 Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ J Plant Physiol 55(6):782. https://doi.org/10.1134/S1021443708060071 Yeoh HH, Badger MR, Watson L (1980) Variations in K(m)(CO(2)) of ribulose-1,5-bisphosphate carboxylase among grasses. Plant Physiol 66(6):1110–1112 Yi C, Park S, Yun HS, Kwon C (2013) Vesicle-associated membrane proteins 721 and 722 are required for unimpeded growth of Arabidopsis under ABA application. J Plant Physiol 170(5):529–533. https://doi.org/10.1016/j.jplph.2012.11.001 Yin Y-G, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sugaya S, Matsukura C (2010) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. J Exp Bot 61(2):563–574. https://doi.org/10.1093/jxb/erp333 Yocum G (2001) Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. J Insect Physiol 47(10):1139–1145. https://doi.org/10.1016/S0022-1910(01)00095-6 Yotov WV, Moreau A, St-Arnaud R (1998) The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol Cell Biol 18(3):1303–1311. https://doi.org/10.1128/mcb.18.3.1303 Yuan Y, Zhong M, Shu S, Du N, Sun J, Guo S (2016) Proteomic and physiological analyses reveal putrescine responses in roots of cucumber stressed by NaCl. Front Plant Sci 7:1035. https://doi.org/10.3389/fpls.2016.01035 Zhang X, Liu S, Takano T (2008) Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotech Lett 30(7):1289–1294. https://doi.org/10.1007/s10529-008-9685-6 Zhang L, Zhang H, Liu P, Hao H, Jin JB, Lin J (2011) Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS ONE 6(10):e26129. https://doi.org/10.1371/journal.pone.0026129 Zhang M, Fang Y, Ji Y, Jiang Z, Wang L (2013) Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South Afr J Bot 85:1–9. https://doi.org/10.1016/j.sajb.2012.11.005 Zhang L, Hu W, Wang Y, Feng R, Zhang Y, Liu J, Jia C, Miao H, Zhang J, Xu B, Jin Z (2015) The MaASR gene as a crucial component in multiple drought stress response pathways in Arabidopsis. Funct Integr Genomics 15(2):247–260. https://doi.org/10.1007/s10142-014-0415-y Zhang F, Zhu G, Du L, Shang X, Cheng C, Yang B, Hu Y, Cai C, Guo W (2016) Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep 6:20582. https://doi.org/10.1038/srep20582 Zhang H, Li X, Zhang S, Yin Z, Zhu W, Li J, Meng L, Zhong H, Xu N, Wu Y, Sun GY (2018) Rootstock alleviates salt stress in grafted mulberry seedlings: physiological and PSII function responses. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01806 Ziya Motalebipour E, Kafkas S, Khodaeiaminjan M, Çoban N, Gözel H (2016) Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: development of novel SSR markers and genetic diversity in Pistacia species. BMC Genomics 17(1):998. https://doi.org/10.1186/s12864-016-3359-x Zrig A, Tounekti T, Vadel AM, Ben Mohamed H, Valero D, Serrano M, Chtara C, Khemira H (2011) Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiol Biochem (PPB) 49(11):1313–1322. https://doi.org/10.1016/j.plaphy.2011.08.009 Zrig A, Ben Mohamed H, Tounekti T, Khemira H, Serrano M, Valero D, Vadel AM (2016) Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South Afr J Bot 102:50–59. https://doi.org/10.1016/j.sajb.2015.09.001 Zuther E, Huang S, Jelenska J, Eilenberg H, Arnold EM, Su X, Sirikhachornkit A, Podkowinski J, Zilberstein A, Haselkorn R, Gornicki P (2004) Complex nested promoters control tissue-specific expression of acetyl-CoA carboxylase genes in wheat. Proc Natl Acad Sci USA 101(5):1403–1408. https://doi.org/10.1073/pnas.0307846100