Assessing the quality of the excess chemical potential flux scheme for degenerate semiconductor device simulation
Tóm tắt
The van Roosbroeck system models current flows in (non-)degenerate semiconductor devices. Focusing on the stationary model, we compare the excess chemical potential discretization scheme, a flux approximation which is based on a modification of the drift term in the current densities, with another state-of-the-art Scharfetter–Gummel scheme, namely the diffusion-enhanced scheme. Physically, the diffusion-enhanced scheme can be interpreted as a flux approximation which modifies the thermal voltage. As a reference solution we consider an implicitly defined integral flux, using Blakemore statistics. The integral flux refers to the exact solution of a local two point boundary value problem for the continuous current density and can be interpreted as a generalized Scharfetter–Gummel scheme. All numerical discretization schemes can be used within a Voronoi finite volume method to simulate charge transport in (non-)degenerate semiconductor devices. The investigation includes the analysis of Taylor expansions, a derivation of error estimates and a visualization of errors in local flux approximations to extend previous discussions. Additionally, drift-diffusion simulations of a p–i–n device are performed.
Tài liệu tham khảo
Abdel, D.: Comparison of flux discretizations for generalized drift-diffusion systems. Master’s thesis, Technical University Berlin (2020)
Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme. Numer. Math. 121, 637–670 (2012)
Blakemore, J.S.: The parameters of partially degenerate semiconductors. Proc. Phys. Soc. A 65, 460–461 (1952)
Blakemore, J.S.: Approximations for Fermi-Dirac integrals, especially the function \(F_{1/2}(\eta )\) used to describe electron density in a semiconductor. Solid State Elect. 25(11), 1067–1076 (1982)
Cancès, C., Chainais-Hillairet, C., Fuhrmann, J., Gaudeul, B.: A numerical-analysis-focused comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model. IMA J. Numer. Anal. 41(1), 271–314 (2021)
Eymard, R., Fuhrmann, J., Gärtner, K.: A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems. Numer. Math. 102, 463–495 (2006)
Farrell, P., Doan, DH., Kantner, M., Fuhrmann, J., Koprucki, T., Rotundo, N.: Drift-Diffusion Models. In: Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs, and Amplifiers, CRC Press Taylor & Francis Group, pp 733–771 (2017a)
Farrell, P., Koprucki, T., Fuhrmann, J.: Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics. J. Comput. Phys. 346, 497–513 (2017b)
Farrell, P., Patriarca, M., Fuhrmann, J., Koprucki, T.: Comparison of thermodynamically consistent charge carrier flux discretizations for Fermi-Dirac and Gauss-Fermi statistics. Opt. Quant. Electron. 50, 101 (2018)
Fuhrmann, J.: VoronoiFVM.jl - Solver for coupled nonlinear partial differential equations based on the Voronoi finite volume method. https://github.com/j-fu/VoronoiFVM.jl, https://doi.org/10.5281/zenodo.3529808(2019–2020)
Gärtner, K.: Existence of bounded discrete steady-state solutions of the van Roosbroeck system with monotone Fermi-Dirac statistic functions. J. Comput. Elect. 14(3), 773–787 (2015)
Kantner, M.: Generalized Scharfetter–Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient. J. Comput. Phys. 402, 109091 (2020)
Koprucki, T., Gärtner, K.: Discretization scheme for drift-diffusion equations with strong diffusion enhancement. Opt. Quant. Elect. 45, 791–796 (2013)
Patriarca, M., Farrell, P., Koprucki, T., Auf der, Maur M.: Highly accurate discretizations for non-Boltzmann charge transport in semiconductors. pp 53–54, (2018) https://doi.org/10.1109/NUSOD.2018.8570265
Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon Read diode oscillator. IEEE Trans. Elect. Dev. 16(1), 64–77 (1969)
Silvaco International: Atlas user’s manual. Santa Clara, CA (2016)
Synopsys, Inc: Sentaurus device userguide. Mountain View, CA (2010)
Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2006)
Yu, Z., Dutton, R.: SEDAN III—A one-dimensional device simulator. www-tcad.stanford.edu/tcad/programs/sedan3.html (1988)