Assessing the probability of El Niño-related weather and climate anomalies in Russian regions

И. И. Мохов1, A. V. Timazhev1
1Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 119017, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

K. Arpe, L. Bengtsoon, G. S. Golitsyn, et al., “Analysis and Modeling of the Hydrological Regime Variations in the Caspian Sea Basin,” Dokl. Akad. Nauk, No. 2, 366 (1999) [Dokl. Earth Sci., 366 (1999)].

V. I. Byshev, Synoptic and Large-scale Variability of the Ocean and Atmosphere (Nauka, Moscow, 2003) [in Russian].

Roshydromet Second Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation, Chapter 5.3 (Roshydromet, Moscow, 2014) [in Russian].

G. V. Gruza, E. Ya. Ran’kova, L. K. Kleshchenko, and L. N. Aristova, “A Relationship between Climate Anomalies over Russia and El Niño-Southern Oscillation Events,” Meteorol. Gidrol., No. 5 (1999) [Russ. Meteorol. Hydrol., No. 5 (1999)].

I. V. Zheleznova and D. Yu. Gushchina, “The Response of Global Atmospheric Circulation to Two Types of El Nino,” Meteorol. Gidrol., No. 3 (2015) [Russ. Meteorol. Hydrol., No. 3, 40 (2015)].

V. D. Kaznacheeva and I. V. Trosnikov, “Estimation of Dependence of Seasonal Predictability of Meteorological Quantities in Different Regions of the Northern Hemisphere on the El Niño-Southern Oscillation Phenomenon,” Meteorol. Gidrol., No. 2 (2008) [Russ. Meteorol. Hydrol., No. 2, 33 (2008)].

V. D. Kaznacheeva and I. V. Trosnikov, “Assessment of the Dependence of the Skill and Predictability of Seasonal Forecasts on Boundary Conditions of the Model,” Meteorol. Gidrol., No. 10 (2009) [Russ. Meteorol. Hydrol., No. 10, 34 (2009)].

A. V. Meshcherskaya, V. M. Mirvis, and M. P. Golod, “Drought of 2010 against a Background of Long-term Variations of Aridity in Basic Grain-producing Regions in the European Part of Russia,” Trudy GGO, No. 563 (2011) [in Russian].

I. I. Mokhov, “Hydrological Anomalies and Tendencies of Change in the Basin of the Amur River under Global Warming,” Dokl. Akad. Nauk, No. 5, 455 (2014) [Dokl. Earth Sci., No. 2, 455 (2014)].

I. I. Mokhov, “Action as an Integral Characteristic of Climatic Structures: Estimates for Atmospheric Blockings,” Dokl. Akad. Nauk, No. 3, 409 (2006) [Dokl. Earth Sci., No. 6, 409 (2006)].

I. I. Mokhov, “Detection of the Areas of the World Ocean Impact on the Regional Climate in Russia,” in Natural Environment of Russia: Adaptation Processes under Climate Change and Nuclear Power Development (IFZ RAN, Moscow, 2014) [in Russian].

I. I. Mokhov, “Specific Features of the 2010 Summer Heat Formation in the European Territory of Russia in the Context of General Climate Changes and Climate Anomalies,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 6, 47 (2011)].

I. I. Mokhov, M. G. Akperov, M. A. Prokof’eva, et al., “Blockings in the Northern Hemisphere and Euro-Atlantic Region: Estimates of Changes from Reanalysis Data and Model Simulations,” Dokl. Akad. Nauk, No. 5, 449 (2013) [Dokl. Earth Sci., No. 2, 449 (2013)].

I. I. Mokhov, J.-L. Dufresne, H. Le Treut, et al., “Changes in Drought and Bioproductivity Regimes in Land Ecosystems in Regions of Northern Eurasia Based on Calculations Using a Global Climatic Model with Carbon Cycle,” Dokl. Akad. Nauk, No. 6, 405 (2005) [Dokl. Earth Sci., No. 9, 405 (2005)].

I. I. Mokhov, A. V. Eliseev, and D. V. Khvorost’yanov, “Evolution of the Characteristics of Interannual Climate Variability Associated with the El Niño and La Niña Phenomena,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 36 (2000) [Izv., Atmos. Oceanic Phys., No. 6, 36 (2000)].

I. I. Mokhov and V. A. Semenov, “Weather and Climate Anomalies in Russian Regions Related to Global Climate Change,” Meteorol. Gidrol., No. 2 (2016) [Russ. Meteorol. Hydrol., No. 2, 41 (2016)].

I. I. Mokhov, V. A. Semenov, V. Ch. Khon, et al., “Connection between Eurasian and North Atlantic Climate Anomalies and Natural Variations in the Atlantic Thermohaline Circulation Based on Long-term Model Calculations,” Dokl. Akad. Nauk, No. 5, 419 (2008) [Dokl. Earth Sci., No. 3, 419 (2008)].

I. I. Mokhov and D. A. Smirnov, “Study of the Mutual Influence of the El Niño-Southern Oscillation Processes and the North Atlantic and Arctic Oscillations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 5, 42 (2006)].

I. I. Mokhov and D. A. Smirnov, “Relation between the Variations in the Global Surface Temperature, El Niño/La Niña Phenomena, and the Atlantic Multidecadal Oscillation,” Dokl. Akad. Nauk, No. 5, 467 (2016) [Dokl. Earth Sci., No. 2, 467 (2016)].

I. I. Mokhov, D. A. Smirnov, P. I. Nakonechnyi, et al., “Relationship between El Niño/Southern Oscillation and the Indian Monsoon,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].

I. I. Mokhov and A. V. Timazhev, “Climatic Anomalies in Eurasia from El Niño/La Niña Effects,” Dokl. Akad. Nauk, No. 2, 453 (2013) [Dokl. Earth Sci., No. 1, 453 (2013)].

I. I. Mokhov and A. V. Timazhev, “Model Assessment of Possible Changes of Atmospheric Blockings in the Northern Hemisphere under RCP Scenarios of Anthropogenic Forcings,” Dokl. Akad. Nauk, No. 2, 460 (2015) [Dokl. Earth Sci., No. 1, 460 (2015)].

I. I. Mokhov and A. V. Timazhev, “Assessment of the Predictability of Climate Anomalies in Connection with El Nino Phenomena,” Dokl. Akad. Nauk, No. 6, 464 (2015) [Dokl. Earth Sci., No. 2, 464 (2015)].

I. I. Mokhov and V. Ch. Khon, “Interannual Variability and Long-term Tendencies of Change in Atmospheric Centers of Action in the Northern Hemisphere: Analyses of Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 41 (2005) [Izv., Atmos. Oceanic Phys., No. 6, 41 (2005)].

I. I. Mokhov, V. Ch. Khon, A. V. Timazhev, et al., “Hydrological Anomalies and Trends in the Amur River Basin due to Climate Change,” in Extreme Floods in the Amur River Basin: Causes, Forecasts, and Recommendations (Roshydromet, Moscow, 2014) [in Russian].

E. S. Nesterov, The North Atlantic Oscillation: Atmosphere and Ocean (Triadaltd., Moscow, 2013) [in Russian].

A. B. Polonskii and D. V. Basharin, “On the Influence of the North Atlantic and Southern Osciltations on the Variability of Air Temperature in the Mediterranean-European Region,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 38 (2002) [Izv., Atmos. Oceanic Phys., No. 1, 38 (2002)].

V. Ch. Khon and I. I. Mokhov, “Model Estimates for the Sensitivity of Atmospheric Centers of Action to Global Climate Changes,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 6, 42 (2006)].

K. Arpe, L. Bengtsson, G. S. Golitsyn, et al., “Connection between Caspian Sea Level Variability and ENSO,” Geophys. Res. Lett., No. 17, 27 (2000).

K. Ashok and T. Yamagata, “The El Niño with a Difference,” Nature, 461 (2009).

J. Bjerknes, “A Possible Response of the Atmospheric Hadley Circulation to Equatorial Anomalies of Ocean Temperature,” Tellus, 18 (1966).

J. Bjerknes, “Atmospheric Teleconnections from the EquatorialPacific,” J. Phys. Oceanogr., No. 3, 97 (1969).

S. Bronnimann, “Impact of El Niño-Southern Oscillation on European Climate,” Rev. Geophys., 45 (2007).

Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge Univ. Press, Cambridge, 2013).

D. P. Dee et al., “The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).

Q. Ding, B. Wang, J. M. Wallace, and G. Branstator, “Tropical-extratropical Teleconnections in Boreal Summer: Observed Interannual Variability,” J. Climate, 24 (2011).

K. Fraedrich and K. Muller, “Climate Anomalies in Europe Associated with ENSO Extremes,” Int. J. Climatol., No. 1, 12 (1992).

I. Herceg Bulic and F. Kucharski, “Delayed ENSO Impact on Spring Precipitation over North/Atlantic European Region,” Climate Dynamics, 38 (2012).

M. M. Hurwitz, N. Calvo, C. I. Garfinkel, et al., “Extra-tropical Atmospheric Response to ENSO in the CMIP5 Models,” Climate Dynamics, 43 (2014).

S. Jevrejeva, J. C. Moore, and A. Grinsted, “Oceanic and Atmospheric Transport of Multiyear El Niño-Southern Oscillation (ENSO) Signatures to Polar Regions,” Geophys. Res. Lett., 31 (2004).

A. V. Meshcherskaya and V. G. Blazhevich, “The Drought and Excessive Moisture Indices in a Historical Perspective in the Principal Grain-producing Regions of the Former Soviet Union,” J. Climate, 10 (1997).

I. I. Mokhov, D. V. Khvorostyanov, and A. V. Eliseev, “Decadal and LongerTerm Changes in El Niño-Southern Oscillation Characteristics,” Int. J. Climatol., 24 (2004).

I. I. Mokhov and D. A. Smirnov, “El Niño-Southern Oscillation Drives North Atlantic Oscillation as Revealed with Nonlinear Techniques from Climatic Indices,” Geophys. Res. Lett., 33 (2006).

I. I. Mokhov, D. A. Smirnov, P. I. Nakonechny, et al., “Alternating Mutual Influence of El Niño/Southern Oscillation and Indian Monsoon,” Geophys. Res. Lett., 38 (2011).

I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, “Changes in Atmospheric Blocking Characteristics within Euro-Atlantic Region and Northern Hemisphere as a Whole in the 21st Century from Model Simulations Using RCP Anthropogenic Scenarios,” Global and Planetary Change, 122 (2014).

J. A. Renwick and J. M. Wallace, “Relationships between North Pacific Wintertime Blocking, El Niño, and the PNA Pattern,” Mon. Wea. Rev., 124 (1996).

K. E. Trenberth, G. W. Branstator, D. Karoly, et al., “Progress during TOGA in Understanding and Modeling Global Teleconnections Associated with Tropical Sea Surface Temperatures,” J. Geophys. Res., 103 (1998).

J. M. Wiedenmann, A. R. Lupo, I. I. Mokhov, and E. A. Tikhonova, “The Climatology of Blocking Anticyclones for the Northern and Southern Hemispheres: Block Intensity as a Diagnostic,” J. Climate, No. 23, 15 (2002).