Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá hiệu suất của các mô hình hòa tan liên tục khác nhau trong việc tính toán năng lượng hydrat hóa của phân tử, polyme và bề mặt: so sánh giữa các mô hình SMD, VASPsol và FDPB
Tóm tắt
Chúng tôi trình bày một so sánh về hiệu suất của ba mô hình hòa tan liên tục, cụ thể là Mô hình Hòa tan Độ mật độ (SMD), VASPsol và Phương pháp Poisson Boltzmann Phân hủy (FDPB), trong việc tính toán năng lượng hydrat hóa của phân tử, polymer và bề mặt bán dẫn. Đối với các hệ phân tử hữu hạn, cả ba mô hình đã được xem xét và dữ liệu tính toán đã được so sánh với năng lượng hòa tan thực nghiệm có sẵn cho một bộ kiểm thử gồm 630 chất hòa tan trung tính. Đối với các hệ không gian tuần hoàn vô hạn, do thiếu các triển khai tuần hoàn của mô hình SMD và năng lượng hòa tan thực nghiệm, chỉ có một so sánh giữa dữ liệu thu được với các mô hình VASPsol và FDPB đã được thực hiện. Là một tiêu chí chính để xác thực việc triển khai tuần hoàn, tính mở rộng kích thước của năng lượng hòa tan của một mô hình chuỗi poly glycine đã được xem xét. Hơn nữa, tác động của phương hướng bề mặt và độ dày của lớp trên năng lượng hòa tan tính toán đã được điều tra bằng cách xem xét năm phương hướng bề mặt chỉ số thấp của galena PbS, do tầm quan trọng của vật liệu này trong các quá trình liên quan đến môi trường. Đối với các hệ phân tử hữu hạn, tất cả các mô hình đã thực hiện tốt trên toàn bộ bộ kiểm thử với các giá trị lỗi không dấu trung bình (MUE) gần với ngưỡng lỗi mục tiêu 1 kcal/mol so với dữ liệu thực nghiệm. Tuy nhiên, tùy thuộc vào mô hình hòa tan được chọn, một số lớp chất hòa tan đã cho thấy những thách thức với MUE đạt đến 4.5 kcal/mol trong những trường hợp tồi tệ nhất. Nhìn chung, các mô hình hoạt động tốt nhất được tìm thấy là: FDPB > SMD ≈ VASPsol. Đối với các hệ không gian tuần hoàn vô hạn, tính mở rộng kích thước của năng lượng hòa tan tính toán đã được xác minh, cả với mô hình VASPsol và FDPB. Ngoài ra, các tính toán thực hiện trên các mô hình bề mặt PbS cũng tiết lộ ít nhất một sự đồng thuận định tính giữa hai mô hình hòa tan. Cụ thể, các xu hướng trong sự biến đổi năng lượng bề mặt giữa các trường hợp pha khí và hòa tan, năng lượng hòa tan tính toán, cũng như sự hội tụ năng lượng hòa tan bề mặt như một hàm của số lớp trong các mô hình lớp đã được phát hiện rất tương tự giữa hai phương pháp này. Nhìn chung, do đó, các kết quả này rất hứa hẹn cho tính khả thi của các mô hình hòa tan liên tục cho một loạt các chất hòa tan, từ các chất hòa tan nhỏ hữu hạn đến các hệ tuần hoàn mở rộng.
Từ khóa
#Mô hình hòa tan liên tục #năng lượng hydrat hóa #Mô hình Hòa tan Độ mật độ #VASPsol #Poisson Boltzmann Phân hủyTài liệu tham khảo
Tomasi J (2004) Thirty years of continuum solvation chemistry: a review, and prospects for the near future. Theoretical chemistry accounts. Springer, New York, pp 184–203
Tomasi J, Mennucci B (2002) Self-consistent reaction field methods. Encyclopedia of computational chemistry. Hoboken, Wiley
Herbert JM (2021) Dielectric continuum methods for quantum chemistry. Wiley Interdisc Rev Comput Mol Sci 11:e1519
Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093
Fattebert JL, Gygi F (2003) First-principles molecular dynamics simulations in a continuum solvent. Int J Quantum Chem 93:139–147. https://doi.org/10.1002/qua.10548
Fattebert JL, Gygi F (2002) Density functional theory for efficient ab initio molecular dynamics simulations in solution. J Comput Chem 23:662–666. https://doi.org/10.1002/jcc.10069
Klapper I, Hagstrom R, Fine R et al (1986) Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins Struct Funct Bioinform 1:47–59. https://doi.org/10.1002/prot.340010109
Gilson MK, Sharp KA, Honig BH (1988) Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comput Chem 9:327–335. https://doi.org/10.1002/jcc.540090407
Gilson MK, Honig B (1988) Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins Struct Funct Bioinform 4:7–18. https://doi.org/10.1002/prot.340040104
Rocchia W, Sridharan S, Nicholls A et al (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J Comput Chem 23:128–137. https://doi.org/10.1002/jcc.1161
Labat F, Civalleri B, Dovesi R (2018) Implicit solvation using a generalized finite-difference approach in CRYSTAL: implementation and results for molecules, polymers, and surfaces. J Chem Theory Comput 14:5969–5983. https://doi.org/10.1021/acs.jctc.8b00762
Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n
Mathew K, Sundararaman R, Letchworth-Weaver K et al (2014) Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys 140:84106. https://doi.org/10.1063/1.4865107
Mathew K, Kolluru VSC, Mula S et al (2019) Implicit self-consistent electrolyte model in plane-wave density-functional theory. J Chem Phys 151:234101. https://doi.org/10.1063/1.5132354
Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mole Struct THEOCHEM 464:211–226
Tomasi J, Cancès E, Pomelli CS et al (2007) Modern theories of continuum models. Continuum solvation models in chemical physics: from theory to applications. Wiley, Hoboken, pp 1–123
Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mole Biol 55:379. https://doi.org/10.1016/0022-2836(71)90324-X
Pascual-Ahuir JL, Silla E (1990) GEPOL: an improved description of molecular surfaces. I. Building the spherical surface set. J Comput Chem 11:1047–1060. https://doi.org/10.1002/jcc.540110907
Pomelli CS, Tomasi J, Cammi R (2001) A symmetry adapted tessellation of the GEPOL surface: applications to molecular properties in solution. J Comput Chem 22:1262–1272. https://doi.org/10.1002/jcc.1083
Frediani L, Cammi R, Pomelli CS et al (2004) New developments in the symmetry-adapted algorithm of the polarizable continuum model. J Comput Chem 25:375–385. https://doi.org/10.1002/jcc.10381
Scalmani G, Rega N, Cossi M, Barone V (2002) Finite elements molecular surfaces in continuum solvent models for large chemical systems. J Comput Methods Sci Eng 2:469–474. https://doi.org/10.3233/JCM-2002-23-423
Cramer CJ, Truhlar DG (2008) A universal approach to solvation modeling. Acc Chem Res 41:760–768
Bondi A (1964) Van der waals volumes and radii. J Phys Chem 68:441–451. https://doi.org/10.1021/j100785a001
Mantina M, Chamberlin AC, Valero R et al (2009) Consistent van der Waals radü for the whole main group. J Phys Chem A 113:5806–5812. https://doi.org/10.1021/jp8111556
Cossi M (2004) Continuum solvation model for infinite periodic systems. Chem Phys Lett 384:179–184. https://doi.org/10.1016/j.cplett.2003.11.108
Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805. https://doi.org/10.1039/P29930000799
Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997
Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. https://doi.org/10.1002/jcc.10189
Luty BA, Davis ME, McCammon JA (1992) Electrostatic energy calculations by a Finite-difference method: Rapid calculation of charge–solvent interaction energies. J Comput Chem 13:768–771. https://doi.org/10.1002/jcc.540130610
Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988. https://doi.org/10.1021/j100058a043
Tannor DJ, Marten B, Murphy R et al (1994) Accurate first principles calculation of molecular charge distributions and solvation energies from Ab Initio quantum mechanics and continuum dielectric theory. J Am Chem Soc 116:11875–11882. https://doi.org/10.1021/ja00105a030
Wang J, Cai Q, Li ZL et al (2009) Achieving energy conservation in Poisson-Boltzmann molecular dynamics: accuracy and precision with finite-difference algorithms. Chem Phys Lett 468:112–118. https://doi.org/10.1016/j.cplett.2008.12.049
Li L, Li C, Sarkar S et al (2012) DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys 5:9. https://doi.org/10.1186/2046-1682-5-9
Madura JD, Briggs JM, Wade RC et al (1995) Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 91:57–95. https://doi.org/10.1016/0010-4655(95)00043-F
Bashford D (1997) An object-oriented programming suite for electrostatic effects in biological molecules: An experience report on the MEAD project. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp 233–240
Wang M, Wong CF (2006) Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory. J Phys Chem A 110:4873–4879. https://doi.org/10.1021/jp0565195
Cramer CJ (2013) Essentials of computational chemistry: theories and models, 2nd edn. Wiley, Hoboken
Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theoret Chim Acta 44:129–138. https://doi.org/10.1007/BF00549096
Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) Charge model 5: an extension of hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theo Comput 8:527–541. https://doi.org/10.1021/ct200866d
Vilseck JZ, Tirado-Rives J, Jorgensen WL (2014) Evaluation of CM5 charges for condensed-phase modeling. J Chem Theory Comput 10:2802–2812. https://doi.org/10.1021/ct500016d
Vassetti D, Labat F (2021) Evaluation of the performances of different atomic charge and nonelectrostatic models in the finite-difference Poisson–Boltzmann approach. Int J Quantum Chem 121:e26560. https://doi.org/10.1002/qua.26560
Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16:548–558. https://doi.org/10.1107/s0021889883010985
Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713
Fisicaro G, Genovese L, Andreussi O et al (2016) A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments. J Chem Phys 144:014103. https://doi.org/10.1063/1.4939125
Fisicaro G, Genovese L, Andreussi O et al (2017) Soft-Sphere continuum solvation in electronic-structure calculations. J Chem Theory Comput 13:3829–3845. https://doi.org/10.1021/acs.jctc.7b00375
Yin WJ, Krack M, Li X et al (2017) Periodic continuum solvation model integrated with first-principles calculations for solid surfaces. Prog Nat Sci Mater Int 27:283–288. https://doi.org/10.1016/j.pnsc.2017.03.003
Sinstein M, Scheurer C, Matera S et al (2017) Efficient implicit solvation method for full potential DFT. J Chem Theory Comput 13:5582–5603. https://doi.org/10.1021/acs.jctc.7b00297
Dziedzic J, Helal HH, Skylaris CK et al (2011) Minimal parameter implicit solvent model for ab initio electronic-structure calculations. EPL 95:43001. https://doi.org/10.1209/0295-5075/95/43001
Dziedzic J, Fox SJ, Fox T et al (2013) Large-scale DFT calculations in implicit solvent—A case study on the T4 lysozyme L99A/M102Q protein. Int J Quantum Chem 113:771–785. https://doi.org/10.1002/qua.24075
Scherlis DA, Fattebert JL, Gygi F et al (2006) A unified electrostatic and cavitation model for first-principles molecular dynamics in solution. J Chem Phys 124:74103. https://doi.org/10.1063/1.2168456
Scherlis DA, Fattebert JL, Marzari N (2006) Stacking of oligo- and polythiophene cations in solution: surface tension and dielectric saturation. J Chem Phys 124:194902. https://doi.org/10.1063/1.2198811
Sánchez VM, Sued M, Scherlis DA (2009) First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent. J Chem Phys 131:74103. https://doi.org/10.1063/1.3254385
Wang HF, Liu ZP (2009) Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model. J Phys Chem C 113:17502–17508. https://doi.org/10.1021/jp9059888
Fishman M, Zhuang HL, Mathew K et al (2013) Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys Rev B Condens Matter Mater Phys 87:245402. https://doi.org/10.1103/PhysRevB.87.245402
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
Perdew JP, Burke K, Ernzerhof M (1997) Erratum: generalized gradient approximation made simple (Physical Review Letters (1996) 77 (3865)). Phys Rev Lett 78:1396
Marenich AV, Cramer CJ, Truhlar DG (2013) Generalized born solvation model SM12. J Chem Theo Comput 9:609–620. https://doi.org/10.1021/ct300900e
Frisch MJ, Trucks GW, Schlegel HB, et al (2013) Gaussian 09, Gaussian, Inc., Wallingford CT
Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517. https://doi.org/10.1021/jp971959k
Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110. https://doi.org/10.1063/1.3359469
Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0
Dovesi R, Orlando R, Erba A et al (2014) C <scp>RYSTAL14</scp>: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114:1287–1317. https://doi.org/10.1002/qua.24658
Dovesi R, Erba A, Orlando R et al (2018) Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip Rev Comput Mole Sci 8:e1360. https://doi.org/10.1002/wcms.1360
Hayryan S, Hu CK, Skřivánek J et al (2005) A new analytical method for computing solvent-accessible surface area of macromolecules and its gradients. J Comput Chem 26:334–343. https://doi.org/10.1002/jcc.20125
Vassetti D, Civalleri B, Labat F (2020) Analytical calculation of the solvent-accessible surface area and its nuclear gradients by stereographic projection: a general approach for molecules, polymers, nanotubes, helices, and surfaces. J Comput Chem 41:1464–1479. https://doi.org/10.1002/jcc.26191
Duarte Ramos Matos G, Kyu DY, Loeffler HH et al (2017) Approaches for calculating solvation free energies and enthalpies demonstrated with an update of the freesolv database. J Chem Eng Data 62:1559–1569
Mobley DL, Shirts M, Lim N, et al (2018) MobleyLab/FreeSolv: Version 0.52. https://doi.org/10.5281/zenodo.1161245
Löfgren J, Rahm JM, Brorsson J, Erhart P (2020) Computational assessment of the efficacy of halides as shape-directing agents in nanoparticle growth. Phys Rev Mater 4:096001. https://doi.org/10.1103/PhysRevMaterials.4.096001
VASPsol convergence when involving I (Iodine) · Issue #34 · henniggroup/VASPsol · GitHub. https://github.com/henniggroup/VASPsol/issues/34. Accessed 19 Apr 2021
Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188
Durand P, Barthelat JC (1975) A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theoret Chim Acta 38:283–302. https://doi.org/10.1007/BF00963468
Ouazzani T, Lichanot A, Plsani C, Roetti C (1993) Relaxation and electronic structure of surfaces in lithium sulphide: a Hartree-Fock ab initio approach. J Phys Chem Solids 54:1603–1611. https://doi.org/10.1016/0022-3697(93)90356-V
Nizam M, Bouteiller Y, Silvi B et al (1988) A theoretical investigation of the electronic structure and some thermodynamic properties of β-pbf2. J Phys C Solid State Phys 21:5351–5359. https://doi.org/10.1088/0022-3719/21/31/006
Voityuk AA, Vyboishchikov SF (2020) Fast and accurate calculation of hydration energies of molecules and ions. Phys Chem Chem Phys 22:14591–14598. https://doi.org/10.1039/d0cp02667k
Marenich AV, Kelly CP, Thompson JD, et al Minnesota Solvation Database Version 2012, University of Minnesota, Minneapolis
Steinmann SN, Sautet P, Michel C (2016) Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models. Phys Chem Chem Phys 18:31850–31861. https://doi.org/10.1039/c6cp04094b
Moon DG, Rehan S, Yeon DH et al (2019) A review on binary metal sulfide heterojunction solar cells. Sol Energy Mater Sol Cells 200:109963. https://doi.org/10.1016/j.solmat.2019.109963
Im SH, Kim HJ, Kim SW et al (2011) All solid state multiply layered PbS colloidal quantum-dot-sensitized photovoltaic cells. Energy Environ Sci 4:4181–4186. https://doi.org/10.1039/c1ee01774h
Nozik AJ, Beard MC, Luther JM et al (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890. https://doi.org/10.1021/cr900289f
Kundu TK, Mukherjee M, Chakravorty D, Cross LE (1998) Dielectric behavior of nanocomposites of lead sulphide and ferroelectric glass ceramics. J Appl Phys 83:4380–4384. https://doi.org/10.1063/1.367196
Bandyopadhyay S, Chatterjee B, Nag P, Bandyopadhyay A (2015) Nanocrystalline PbS as ammonia gas sensor: synthesis and characterization. Clean Soil Air Water 43:1121–1127. https://doi.org/10.1002/clen.201400437
Keim MF, Markl G (2015) Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modeling, and estimation of the growth rate of pyromorphite. Am Miner 100:1584–1594. https://doi.org/10.2138/am-2015-5183
Deringer VL, Dronskowski R (2016) Stabilities and reconstructions of clean PbS and PbSe Surfaces: DFT results and the role of dispersion forces. J Phys Chem C 120:8813–8820. https://doi.org/10.1021/acs.jpcc.6b02173
Wright K, Hillier IH, Vaughan DJ, Vincent MA (1999) Cluster models of the dissociation of water on the surface of galena (PbS). Chem Phys Lett 299:527–531. https://doi.org/10.1016/S0009-2614(98)01312-8
Chen J, Long X, Chen Y (2014) Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: a DFT study. J Phys Chem C 118:11657–11665. https://doi.org/10.1021/jp5000478
Zemann J (1965) Crystal structures, 2nd edition, Vol. 2 by R. W. G. Wyckoff. Acta Crystallographica 19:490–490
Deringer VL, Dronskowski R (2013) Stabilities and reconstructions of PbTe crystal surfaces from density-functional theory. J Phys Chem C 117:24455–24461. https://doi.org/10.1021/jp408699a
Zhang L, Song Q, Zhang SB (2010) Exceptionally strong hydrogen bonds affect the surface energy of colloidal nanocrystals: methylamine and water adsorption on PbS. Phys Rev Lett 104:116101. https://doi.org/10.1103/PhysRevLett.104.116101
Zherebetskyy D, Scheele M, Zhang Y et al (2014) Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344:1380–1384. https://doi.org/10.1126/science.1252727
Kim CE, Tak YJ, Butler KT et al (2015) Lattice-mismatched heteroepitaxy of IV-VI thin films on PbTe(001): an ab initio study. Phys Rev B Condens Matter Mater Phys 91:085307. https://doi.org/10.1103/PhysRevB.91.085307
Wandelt K (Editor) (2012) Surface and Interface Science, Volumes 1 and 2: Volume 1 - Concepts and Methods; Volume 2 - Properties of Elemental Surfaces, Wiley