Assessing the maintainability of software product line feature models using structural metrics

Ebrahim Bagheri1,2, Dragan Gašević1
1Athabasca University, Athabasca, Canada
2National Research Council, Ottawa, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Al-Kilidar, H., Cox, K., & Kitchenham, B. (2005). The use and usefulness of the ISO/IEC 9126 quality standard. In 2005 International Symposium on Empirical Software Engineering, 2005 (p. 7). IEEE.

Babar, M., Chen, L., & Shull, F. (2010). Managing variability in software product lines. IEEE Software, 27(3), 89–91.

Bagheri, E., Noia, T. D., Ragone, A., & Gasevic, D. (2010). Configuring software product line feature models based on stakeholders’ soft and hard requirements. In The 14th International Software Product Line Conference. Springer.

Bansiya, J., & Davis, C. (2002). A hierarchical model for object-oriented design quality assessment. IEEE Transactions on Software Engineering, 28(1), 4–17.

Barbacci, M., Klein, M., Longstaff, T., & Weinstock, C. (1995). Quality attributes. SEI, December.

Basili, V., Shull, F., & Lanubile, F. (1999). Building knowledge through families of experiments. IEEE Transactions on Software Engineering, 25(4), 456–473.

Batory, D. (2005). Feature models, grammars, and propositional formulas. Lecture Notes in Computer Science, 3714, 7.

Benavides, D., Segura, S., Trinidad, P., & Ruiz-Cortes, A. (2007). FAMA: Tooling a framework for the automated analysis of feature models. In Proceeding of the 1st International Workshop on Variability Modelling of Software-intensive Systems (VAMOS) (pp. 129–134).

Benavides, D., Trinidad, P., & Ruiz-Cortes, A. (2005). Automated reasoning on feature models. In LNCS, Advanced Information Systems Engineering: 17th International Conference, CAiSE 2005 (Vol. 3520, pp. 491–503). Springer.

Boskovic, M., Bagheri, E., Gasevic, D., Mohabbati, B., Kaviani, N., & Hatala, M. (2010). Automated staged configuration with semantic web technologies. In International Journal of Software Engineering and Knowledge Engineering. World Scientific.

Briand, L., Bunse, C., & Daly, J. (2001). A controlled experiment for evaluating quality guidelines on the maintainability of object-oriented designs. IEEE Transactions on Software Engineering, 27(6), 513–530.

Briand, L., Morasca, S., & Basili, V. (1996). Property-based software engineering measurement. IEEE Transactions on Software Engineering, 22(1), 68–86.

Briand, L., Wust, J., Daly, J., & VictorPorter, D. (2000). Exploring the relationships between design measures and software quality in object-oriented systems. Journal of Systems and Software, 51(3), 245–273.

Briand, L. C., Wüst, J., Ikonomovski, S. V., & Lounis, H. (1999). Investigating quality factors in object-oriented designs: An industrial case study. In ICSE’99: Proceedings of the 21st International Conference on Software engineering (pp. 345–354). New York, NY: ACM.

Cant, S., Henderson-Sellers, B., & Jeffery, D. (1994). Application of cognitive complexity metrics to object-oriented programs. Journal of Object Oriented Programming, 7, 52–52.

Chidamber, S., Kemerer, C., & MIT, C. (1994). A metrics suite for object oriented design. IEEE Transactions on Software Engineering, 20(6), 476–493.

Cruz-Lemus, J. A., Genero, M., Manso, M. E., Morasca, S., & Piattini, M. (2009). Assessing the understandability of uml statechart diagrams with composite states—A family of empirical studies. Empirical Software Engineering, 14(6), 685–719.

Cruz-Lemus, J. A., Maes, A., Genero, M., Poels, G., & Piattini, M. (2010). The impact of structural complexity on the understandability of uml statechart diagrams. Information Science, 180(11), 2209–2220.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Formalizing cardinality-based feature models and their specialization. Software Process: Improvement and Practice, 10(1), 7–29.

de Oliveira, E. A. Jr., Gimenes, I. M. S., & Maldonado, J. C. (2008). A metric suite to support software product line architectures. In XXXIV Conferncia Latinoamericana de Informtica (CLEI 2008).

Etxeberria, L., & Sagardui, G. (2008). Variability driven quality evaluation in software product lines. In Proceedings of the 12th International Software Product Line Conference (pp. 243–252). IEEE.

Fenton, N. (1994). Software measurement: A necessary scientific basis. IEEE Transactions on software engineering, 20(3), 199–206.

Fenton, N., & Neil, M. (1999). A critique of software defect prediction models. IEEE Transactions on Software Engineering, 25(5), 675–689.

Fenton, N., & Neil, M. (1999). Software metrics: Successes, failures and new directions. Journal of Systems and Software, 47(2–3), 149–157.

Fenton, N., & Pfleeger, S. L. (1997). Software metrics: A rigorous and practical approach (2nd ed.). Boston, MA: PWS Publishing Co.

Finkelstein, L. (2003). Widely, strongly and weakly defined measurement. Measurement, 34(1), 39–48.

Garner, S. (1995). Weka: The waikato environment for knowledge analysis. In Proceedings of the New Zealand Computer Science Research Students Conference (pp. 57–64). Citeseer.

Genero, M., Olivas, J., Piattini, M., & Romero, F. (2001). Using metrics to predict OO information systems maintainability. In Advanced Information Systems Engineering (pp. 388–401). Springer.

Genero, M., Poels, G., & Piattini, M. (2008). Defining and validating metrics for assessing the understandability of entity-relationship diagrams. Data and Knowledge Engineering, 64(3), 534–557.

Griss, M., Favaro, J., & dAlessandro, M. (1998). Integrating feature modeling with the RSEB. In Proceedings of the 5th International Conference on Software Reuse (pp. 76–85). Citeseer.

Hall, M., & Smith, L. (1997). Feature subset selection: A correlation based filter approach. In Proceedings of the 4th International Conference on Neural Information Processing Systems (pp. 855–858).

Herrmannsdoerfer, M., Ratiu, D., & Koegel, M. (2010). Metamodel usage analysis for identifying metamodel improvements. In Proceedings of the 3rd International Conference on Software Language Engineering.

Hershey, J., & Olsen, P. (2007). Approximating the Kullback Leibler divergence between Gaussian mixture models. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, Vol. 4, ICASSP 2007.

Hitz, M., & Montazeri, B. (1995). Measuring coupling and cohesion in object-oriented systems. Proceedings of the International Symposium on Applied Corporate Computing, 50, 75–76.

Hosmer, D., & Lemeshow, S. (2000). Applied logistic regression. New York: Wiley.

Hubbard, D., & Evans, D. (2010). Problems with scoring methods and ordinal scales in risk assessment. IBM Journal of Research and Development, 54(3), 2–10.

Janota, M., & Kiniry, J. (2007). Reasoning about feature models in higher-order logic. In Software Product Line Conference, 2007. SPLC 2007. 11th International (pp. 13–22).

Jarzabek, S., Yang, B., & Yoeun, S. (2006). Addressing quality attributes in domain analysis for product lines. IEE Proceedings-Software, 153, 61.

Jones, C. (2008). Applied software measurement. New York: McGraw-Hill Osborne Media.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A., C.-M. U. P. P. S. E. INST. (1990). Feature-oriented domain analysis (FODA) feasibility study. Pittsburgh, PA: Carnegie Mellon University, Software Engineering Institute.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The architecture tradeoff analysis method. In iceccs. Published by the IEEE Computer Society, p. 0068.

Kent, J. (1983). Information gain and a general measure of correlation. Biometrika, 70(1), 163.

Khoshgoftaar, T. M., & Seliya, N. (2003). Fault prediction modeling for software quality estimation: Comparing commonly used techniques. Empirical Software Engineering, 8(3), 255–283.

Khoshgoftaar, T. M., Munson, J. C., Bhattacharya, B. B., & Richardson, G. D. (1992). Predictive modeling techniques of software quality from software measures. IEEE Transactions on Software Engineering, 18(11), 979–987.

Khoshgoftaar, T. M., Rebours, P., & Seliya, N. (2009). Software quality analysis by combining multiple projects and learners. Software Quality Journal, 17(1), 25–49.

Khoshgoftaar, T., Bhattacharyya, B., & Richardson, G. (1992). Predicting software errors, during development, using nonlinear regression models: A comparative study. IEEE Transactions on Reliability, 41(3), 390–395.

Kitchenham, B., & Pfleeger, S. (1996). Software quality: The elusive target. IEEE Software, 13(1), 12–21.

Kleppe, A. G., Warmer, J., & Bast, W. (2003). MDA explained: The model driven architecture: Practice and promise. Boston, MA: Addison-Wesley Longman Publishing Co Inc.

Kocaguneli, E., Kultur, Y., & Bener, A. (2009). Combining Multiple Learners Induced on Multiple Datasets for Software Effort Prediction. ISSRE.

Korson, T., & McGregor, J. D. (1990). Understanding object-oriented: A unifying paradigm. Communications of the ACM, 33(9), 40–60.

Lee, K., Kang, K., & Lee, J. (2002). Concepts and guidelines of feature modeling for product line software engineering. Lecture Notes in Computer Science, 2319, 62–77.

Liu, Y., Khoshgoftaar, T. M., & Seliya, N. (2010). Evolutionary optimization of software quality modeling with multiple repositories. In IEEE Transactions on Software Engineering, 99, no. PrePrints.

Lopez-Herrejon, R., Batory, D. (2001). A standard problem for evaluating product-line methodologies. In Lecture Notes in Computer Science, pp. 10–24.

Lozano, L. M., García-Cueto E., & Muñiz, J. (2008). Effect of the number of response categories on the reliability and validity of rating scales. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 4(2), 73–79. [Online]. Available: http://dx.doi.org/10.1027/1614-2241.4.2.73 .

Manso, M., Genero, M., & Piattini, M. (2010). No-redundant metrics for UML class diagram structural complexity. In Advanced Information Systems Engineering (pp. 1029–1029). Springer.

McGregor, J. D., Muthig, D., Yoshimura, K., & Jensen, P. (2010). Guest editors’ introduction: Successful software product line practices. IEEE Software, 27(3), 16–21.

Mendonca, M., Branco, M., & Cowan, D. (2009). S.p.l.o.t.: Software product lines online tools. In OOPSLA’09: Proceeding of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications (pp. 761–762). New York, NY: ACM.

Mendonca, M., Wasowski, A., Czarnecki, K., & Cowan, D. (2008). Efficient compilation techniques for large scale feature models. In Proceedings of the 7th International Conference on Generative Programming and Component Engineering (pp. 13–22). New York, NY: ACM.

Olumofin, F. G., & Mišić, V. B. (2007). A holistic architecture assessment method for software product lines. Information and Software Technology, 49(4), 309–323.

Poels, G., & Dedene, G. (1999). DISTANCE: A framework for software measure construction. Technical Report, KU Leuven-Departement toegepaste economische wetenschappen.

Poels, G., & Dedene, G. (2000). Distance-based software measurement: Necessary and sufficient properties for software measures. Information and Software Technology, 42(1), 35–46.

Pohl, K., & Metzger, A. (2006). Software product line testing. Communications of the ACM, 49(12), 78–81.

Pohl, K., Böckle, G., & Van DerLinden, F. (2005). Software product line engineering: Foundations, principles, and techniques. Berlin, Heidelberg, New York: Springer.

Quinlan, J. (1986). Induction of decision trees. Machine learning, 1(1), 81–106.

Scott, W. (1998). Organizations: Rational, natural, and open systems. Upper Saddle River, NJ: Prentice hall.

Selic, B. (2006). Model-driven development: Its essence and opportunities. In ISORC’06: Proceedings of the 9th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (pp. 313–319). Washington, DC: IEEE Computer Society.

Serrano, M. A., Calero, C., Sahraoui, H. A., & Piattini, M. (2008). Empirical studies to assess the understandability of data warehouse schemas using structural metrics. Software Quality Journal, 16(1), 79–106.

Siau, K., & Tan, X. (2005). Improving the quality of conceptual modeling using cognitive mapping techniques. Data and Knowledge Engineering, 55(3), 343–365.

Simon, H. (1978). Rationality as process and as product of thought. The American Economic Review, 68(2), 1–16.

Tessier, P., Gérard, S., Terrier, F., & Geib, J. (2005). “Using variation propagation for model-driven management of a system family.” In Software Product Lines, pp. 222–233.

Wang, H., Li, Y., Sun, J., Zhang, H., & Pan, J. (2007). Verifying feature models using OWL. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 117–129.

Weiss, D. M., Clements, P. C., Kang, K., & Krueger, C. (2006). Software product line hall of fame. In SPLC’06: Proceedings of the 10th International on Software Product Line Conference (p. 237). Washington, DC: IEEE Computer Society.

Weyuker, E. (1988). Evaluating software complexity measures. IEEE Transactions on Software Engineering, 14, 1357–1365.

Yu, E., & Mylopoulos, J. (1994). Understanding “why” in software process modelling, analysis, and design. In Proceedings of the 16th international conference on Software engineering (p. 168). IEEE Computer Society Press.

Zhang, T., Deng, L., Wu, J., Zhou, Q., & Ma, C. (2008). Some metrics for accessing quality of product line architecture. In CSSE’08: Proceedings of the 2008 International Conference on Computer Science and Software Engineering (pp. 500–503). Washington, DC: IEEE Computer Society.