Assessing the extent of land-use change around important bat-inhabited caves

Mariëtte Pretorius1, Wanda Markotter2, Mark Keith1
1Mammal Research Institute, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
2Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa

Tóm tắt

Abstract Background Modification and destruction of natural habitats are bringing previously unencountered animal populations into contact with humans, with bats considered important zoonotic transmission vectors. Caves and cave-dwelling bats are under-represented in conservation plans. In South Africa, at least two cavernicolous species are of interest as potential zoonotic hosts: the Natal long-fingered bat Miniopterus natalensis and the Egyptian fruit bat Rousettus aegyptiacus. Little information is available about the anthropogenic pressures these species face around important roost sites. Both bats are numerous and widespread throughout the country; land-use changes and urban expansions are a rising concern for both conservation and increased bat-human contact. Results Our study addressed this shortfall by determining the extent of land-cover change around 47 roosts between 2014 and 2018 using existing land cover datasets. We determined the land-cover composition around important roost sites (including maternity, hibernacula and co-roosts), distances to urban settlements and assessed the current protection levels of roost localities. We detected an overall 4% decrease in natural woody vegetation (trees) within 5 km buffer zones of all roost sites, with a 10% decrease detected at co-roost sites alone. Agricultural land cover increased the most near roost sites, followed by plantations and urban land-cover. Overall, roosts were located 4.15 ± 0.91 km from urban settlements in 2018, the distances decreasing as urban areas expand. According to the South African National Biodiversity Institute Ecosystem Threat Status assessment, 72% of roosts fall outside of well-protected ecosystems. Conclusions The current lack of regulatory protection of cavernicolous bats and their roosts, increasing anthropogenic expansions and proximity to human settlements raises concerns about increased human-bat contact. Furthermore, uncontrolled roost visitation and vandalism are increasing, contributing to bat health risks and population declines, though the extent of roosts affected is yet to be quantified. In an era where pandemics are predicted to become more frequent and severe due to land-use change, our research is an urgent call for the formal protection of bat-inhabited caves to safeguard both bats and humans.

Từ khóa


Tài liệu tham khảo

Aktar W, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol. 2009;2:1–12. https://doi.org/10.2478/v10102-009-0001-7.

Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, et al. Global hotspots and correlates of emerging zoonotic diseases. Nat Commun. 2017;8:1–10. https://doi.org/10.1038/s41467-017-00923-8.

Apoznański G, Kokurewicz T, Blesznowska J, Kwasiborska E, Marszalek T, Górska M. Use of coniferous plantations by bats in western Poland during summer. Balt For. 2020;26. https://doi.org/10.46490/BF232.

Avila-Flores R, Fenton MB. Use of spatial features by foraging insectivorous bats in a large urban landscape. J Mammal. 2005;86:1193–204. https://doi.org/10.1644/04-MAMM-A-085R1.1.

Aziz SA, Olival KJ, Bumrungsri S, Richards GC, Racey PA. The conflict between pteropodid bats and fruit growers: species, legislation and mitigation. In: Bats in the Anthropocene: conservation of bats in a changing world: Springer; 2016. p. 377–426. https://doi.org/10.1007/978-3-319-25220-9_13.

Bailey AM, Ober HK, Reichert BE, McCleery RA. Canopy cover shapes bat diversity across an urban and agricultural landscape mosaic. Environ Conserv. 2019;46:193–200. https://doi.org/10.1017/S0376892919000109.

Banks D, Griffin N, Shackleton C, Shackleton S, Mavrandonis J. Wood supply and demand around two rural settlements in a semi-arid savanna, South Africa. Biomass Bioenergy. 1996;11:319–31. https://doi.org/10.1016/0961-9534(96)00031-1.

Barclay RMR, Jacobs DS. Differences in the foraging behaviour of male and female Egyptian fruit bats (Rousettus aegyptiacus). Can J Zool. 2011;89:466–73. https://doi.org/10.1139/z11-013.

Barova S, Streit A. Action plan for the conservation of all bat species in the European Union 2018-2024. Brussels: European Commission, UNEP and Eurobats; 2018. Available on https://ec.europa.eu/environment/nature/conservation/species/action_plans/pdf/EU%20Bats%20Action%20Plan.pdf

Barré K, Kerbiriou C, Ing R-K, Bas Y, Azam C, Le Viol I, et al. Bats seek refuge in cluttered environment when exposed to white and red lights at night. Move Ecol. 2021;9:1–11. https://doi.org/10.1186/s40462-020-00238-2.

Brinati A, Oliveira JM, Oliveira VS, Barros MS, Carvalho BM, Oliveira LS, et al. Low, chronic exposure to endosulfan induces bioaccumulation and decreased carcass total fatty acids in neotropical fruit bats. Bull Environ Contam Toxicol. 2016;97:626–31. https://doi.org/10.1007/s00128-016-1910-8.

Cemansky R. Africa’s indigenous fruit trees: a blessing in decline. Environ Health Perspect. 2015;123(12). https://doi.org/10.1289/ehp.123-A291.

Centeno-Cuadros A, Hulva P, Romportl D, Santoro S, Stříbná T, Shohami D, et al. Habitat use, but not gene flow, is influenced by human activities in two ecotypes of Egyptian fruit bat (Rousettus aegyptiacus). Mole Ecol. 2017;26:6224–37. https://doi.org/10.1111/mec.14365.

Chakravarthy A, Girish A. Crop protection and conservation of frugivorous bats in orchards of hill and coastal regions of Karnataka. Zoos Print J. 2003;18:1169–71. https://doi.org/10.11609/JoTT.ZPJ.18.8.1169-71.

Coleman JL, Barclay RM. Prey availability and foraging activity of grassland bats in relation to urbanization. J Mammal. 2013;94:1111–22. https://doi.org/10.1644/12-MAMM-A-217.1.

Cooper-Bohannon R, Rebelo H, Jones G, Cotterill F, Monadjem A, Schoeman MC, et al. Predicting bat distributions and diversity hotspots in southern Africa. Hystrix Italian J Mammal. 2016;27(1). https://doi.org/10.4404/hystrix-27.1-11722.

Daniel S, Korine C, Pinshow B. Central-place foraging in nursing, arthropod-gleaning bats. Can J Zool. 2008;86:623–6. https://doi.org/10.1139/Z08-041.

De Oliveira JM, de Almeida Lima GD, Destro ALF, Condessa S, Zuanon JAS, Freitas MB, et al. Short-term intake of deltamethrin-contaminated fruit, even at low concentrations, induces testicular damage in fruit-eating bats (Artibeus lituratus). Chemosphere. 2021;278:130423. https://doi.org/10.1016/j.chemosphere.2021.130423.

Dennis GC, Gartrell BD. Nontarget mortality of New Zealand lesser short-tailed bats (Mystacina tuberculata) caused by diphacinone. J Wildl Dis. 2015;51:177–86. https://doi.org/10.7589/2013-07-160.

Dietrich M, Kearney T, Seamark EC, Paweska JT, Markotter W. Synchronized shift of oral, faecal and urinary microbiotas in bats and natural infection dynamics during seasonal reproduction. R Soc Open Sci. 2018;5:180041. https://doi.org/10.1098/rsos.180041.

Dietz C, Nill D, von Helversen O. Bats of Britain, Europe and Northwest Africa: Bloomsbury publishing; 2009. p. 440.

Duchamp JE, Swihart RK. Shifts in bat community structure related to evolved traits and features of human-altered landscapes. Landsc Ecol. 2008;23:849–60. https://doi.org/10.1007/s10980-008-9241-8.

Epstein JH, Anthony SJ, Islam A, Kilpatrick AM, Khan SA, Balkey MD, et al. Nipah virus dynamics in bats and implications for spillover to humans. Proc Natl Acad Sci. 2020;117:29190–201. https://doi.org/10.1073/pnas.2000429117.

Estrada-Villegas S, Meyer CFJ, Kalko EKV. Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biol Conserv. 2010;143:597–608. https://doi.org/10.1016/j.biocon.2009.11.009.

Fenton MB, Cumming DH, Rautenbach I, Cumming GS, Cumming MS, Ford G, et al. Bats and the loss of tree canopy in African woodlands. Conserv Biol. 1998;12:399–407. https://doi.org/10.1046/j.1523-1739.1998.96376.x.

Ferreira RL, Giribet G, Du Preez G, Ventouras O, Janion C, Silva MS. The Wynberg cave system, the most important site for cave fauna in South Africa at risk. Subterranean Biol. 2020;36:73–81. https://doi.org/10.3897/subtbiol.36.60162.

Forister ML, Pelton EM, Black SH. Declines in insect abundance and diversity: we know enough to act now. Conserv Sci Pract. 2019;1:e80. https://doi.org/10.1111/csp2.80.

Frick WF, Kingston T, Flanders J. A review of the major threats and challenges to global bat conservation. Ann N Y Acad Sci. 2019;1469:5–25. https://doi.org/10.1111/nyas.14045.

Froidevaux J, Boughey K, Hawkins C, Jones G, Collins J. Evaluating survey methods for bat roost detection in ecological impact assessment. Anim Conserv. 2020;23:597–606. https://doi.org/10.1111/acv.12574.

Geldenhuys, M., de Vries, L., Dietrich, M., Mortlock, M., Epstein, J. H., Weyer, J., Paweska, J T., Markotter, W. 2021a. Longitudinal surveillance of diverse coronaviruses within a Rousettus aegyptiacus maternal colony towards understanding viral maintenance and excretion dynamics. In preparation.

Geldenhuys M, Mortlock M, Epstein JH, Paweska JT, Weyer J, Markotter W. Overview of bat and wildlife coronavirus surveillance in Africa: a framework for global investigations. Viruses. 2021b;13:936. https://doi.org/10.3390/v13050936.

Grange ZL, Goldstein T, Johnson CK, Anthony S, Gilardi K, Daszak P, et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc Natl Acad Sci. 2021:118. https://doi.org/10.1073/pnas.2002324118.

Hardin PJ, Jackson MW, Otterstrom SM. Mapping, measuring, and modelling urban growth. In: Jensen RR, Gatrell JD, McLean D, editors. Geo-spatial technologies in urban environments. Berlin. 176 pp: Springer Science & Business Media; 2007. p. 141–76. https://doi.org/10.1007/978-3-540-69417-5_8.

Helm CW, Cawthra HC, Cowling RM, De Vynck JC, Lockley MG, Marean CW, et al. Protecting and preserving South African aeolianite surfaces from graffiti. Koedoe. 2021;63:1–5. https://doi.org/10.4102/koedoe.v63i1.1656.

Hourigan CL, Catterall CP, Jones D, Rhodes M. The diversity of insectivorous bat assemblages among habitats within a subtropical urban landscape. Austral Ecol. 2010;35:849–57. https://doi.org/10.1111/j.1442-9993.2009.02086.x.

Jacobs DS. Intraspecific variation in wingspan and echolocation call flexibility might explain the use of different habitats by the insectivorous bat, Miniopterus schreibersii (Vespertilionidae: Miniopterinae). Acta Chiropterologica. 1999;1:93–103.

Johnson CN, Balmford A, Brook BW, Buettel JC, Galetti M, Guangchun L, et al. Biodiversity losses and conservation responses in the Anthropocene. Science. 2017;356:270–5. https://doi.org/10.1126/science.aam9317.

Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CC, et al. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc R Soc B. 2020;287:20192736. https://doi.org/10.1098/rspb.2019.2736.

Jones KE, Purvis A, Gittleman JL. Biological correlates of extinction risk in bats. Am Nat. 2003;161:601–14. https://doi.org/10.1086/368289.

Jones G, Jacobs DS, Kunz TH, Willig MR, Racey PA. Carpe noctem: the importance of bats as bioindicators. Endanger Species Res. 2009;8:93–115. https://doi.org/10.3354/esr00182.

Joshi NK, Leslie T, Rajotte EG, Biddinger DJ. Environmental impacts of reduced-risk and conventional pesticide programs differ in commercial apple orchards, but similarly influence pollinator community. Chemosphere. 2020;240:124926. https://doi.org/10.1016/j.chemosphere.2019.124926.

Jung K, Kalko EK. Adaptability and vulnerability of high flying Neotropical aerial insectivorous bats to urbanization. Divers Distrib. 2011;17:262–74. https://doi.org/10.1111/j.1472-4642.2010.00738.x.

Jung K, Threlfall CG. Trait-dependent tolerance of bats to urbanization: a global meta-analysis. Proc R Soc B Biol Sci. 2018;285:20181222. https://doi.org/10.1098/rspb.2018.1222.

Júnior DPL, Pereira D, Pires RAA, Dantas ESO, de Pereira RS, Bonci MM, et al. Spillover: the role of bats and relationships as reservoirs of zoonotic viruses and the origin of new coronaviruses. Forensic Res Criminol Int J. 2020;8:205–14. https://doi.org/10.15406/frcij.2020.08.00329.

Kalda O, Kalda R, Liira J. Multi-scale ecology of insectivorous bats in agricultural landscapes. Agric Ecosyst Environ. 2015;199:105–13. https://doi.org/10.1016/j.agee.2014.08.028.

Kearney TC, Keith M, Seamark EC. New records of bat species using Gatkop cave in the maternal season. Mammalia. 2017;81:41–8. https://doi.org/10.1515/mammalia-2015-0043.

Lecina-Diaz J, Martínez-Vilalta J, Alvarez A, Banqué M, Birkmann J, Feldmeyer D, et al. Characterizing forest vulnerability and risk to climate-change hazards. Front Ecol Environ. 2021;19:126–33. https://doi.org/10.1002/fee.2278.

Lesiński G, Fuszara E, Kowalski M. Foraging areas and relative density of bats (Chiroptera) in differently human transformed landscapes. Z Säugetierkd. 2000;65:129–37.

Lesiński G. Linear landscape elements and bat casualties on roads-an example Annales Zoologici Fennici. 2008;45:277–81. https://doi.org/10.5735/086.045.0406.

Mann A. South African fossil record. Int Encyclop Biol Anthropol. 2018:1–12. https://doi.org/10.1002/9781118584538.ieba0461.

Markotter W, Coertse J, De Vries L, Geldenhuys M, Mortlock M. Bat-borne viruses in Africa: a critical review. J Zool. 2020;311:77–98. https://doi.org/10.1111/jzo.12769.

McCracken GF. Cave conservation: special problems of bats. Arizona: Course Booklet, Bat Conservation International, Portal; 2011. p. 212.

McKee CD, Islam A, Luby SP, Salje H, Hudson PJ, Plowright RK, et al. The ecology of Nipah virus in Bangladesh: a Nexus of land-use change and opportunistic feeding behavior in bats. Viruses. 2021;13:169. https://doi.org/10.3390/v13020169.

Medellin RA, Wiederholt R, Lopez-Hoffman L. Conservation relevance of bat caves for biodiversity and ecosystem services. Biol Conserv. 2017;211:45–50. https://doi.org/10.1016/j.biocon.2017.01.012.

Medina A, Harvey CA, Merlo DS, Vílchez S, Hernández B. Bat diversity and movement in an agricultural landscape in Matiguás, Nicaragua. Biotropica. 2007;39:120–8. https://doi.org/10.1111/j.1744-7429.2006.00240.x.

Mograbi PJ, Erasmus BF, Witkowski E, Asner GP, Wessels KJ, Mathieu R, et al. Biomass increases go under cover: woody vegetation dynamics in south African rangelands. PLoS One. 2015;10:e0127093. https://doi.org/10.1371/journal.pone.0127093.

Mollentze N, Streicker DG. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc Natl Acad Sci. 2020, 117:9423–30. https://doi.org/10.1073/pnas.1919176117.

Monadjem A, Conenna I, Taylor PJ, Schoeman C. Species richness patterns and functional traits of the bat fauna of arid southern Africa. Hystrix Italian J Mammal. 2018;29:19–24. https://doi.org/10.4404/hystrix-00016-2017.

Monadjem A, Griffin M, Cotterill F, Jacobs D, Taylor PJ. Miniopterus natalensis. The IUCN red list of threatened species. E.T44862A22073129. 2017. https://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T44862A22073129.en. Accessed 14 Mar 2021.

Monadjem A, Reside A, Cornut J, Perrin MR. Roost selection and home range of an African insectivorous bat Nycteris thebaica (Chiroptera, Nycteridae). Mammalia. 2009;73:353–9.

Monadjem A, Taylor PJ, Schoeman MC, others. Bats of southern and Central Africa: a biogeographic and taxonomic synthesis: Wits University Press; 2020. https://doi.org/10.18772/22020085829.

National Planning Commission. South African National Development Plan 2030: Our future-make it work. Pretoria: Presidency of South Africa; 2012. p. 1–489. Available from: https://www.gov.za/issues/national-development-plan-2030. Accessed 13 Aug 2019

Morrison ML. A proposed research emphasis to overcome the limits of wildlife-habitat relationship studies. J Wildl Manag. 2001;65:613–23. https://doi.org/10.2307/3803012.

Noer LC, Dabelsteen T, Bohmann K, Monadjem A. Molossid bats in an African agro-ecosystem select sugarcane fields as foraging habitat. Afr Zool. 2012;47:1–11. https://doi.org/10.1080/15627020.2012.11407517.

Phommexay P, Satasook C, Bates P, Pearch M, Bumrungsri S. The impact of rubber plantations on the diversity and activity of understorey insectivorous bats in southern Thailand. Biodivers Conserv. 2011;20:1441–56. https://doi.org/10.1007/s10531-011-0036-x.

Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, et al. Pathways to zoonotic spillover. Nat Rev Microbiol. 2017;15:502–10. https://doi.org/10.1038/nrmicro.2017.45.

Pretorius M, Broders H, Keith M. Threat analysis of modelled potential migratory routes for Miniopterus natalensis in South Africa. Austral Ecology. 2020;45:1110–22. https://doi.org/10.1111/aec.12940.

Pretorius M, Kearney T, Keith M, Markotter W, Seamark E, Broders H. Increased body mass supports energy compensation hypothesis in the breeding female Natal long-fingered bat Miniopterus natalensis. Acta Chiropterologica. 2019;20:319–28. https://doi.org/10.3161/15081109ACC2018.20.2.004.

Racey PA, Entwistle AC. Conservation ecology. In: Kunz TH, Fenton MB, editors. Bat ecology. Chicago: University of Chicago Press; 2003. p. 680–743.

Rainho A, Palmeirim JM. The importance of distance to resources in the spatial modelling of bat foraging habitat. PLoS One. 2011;6:e19227. https://doi.org/10.1371/journal.pone.0019227.

Republic of South Africa Government Gazette. National Heritage Resources Act [No. 25 of 1999], vol. 406; 1999. Available from: http://www.dac.gov.za/sites/default/files/Legislations%20Files/a25-99.pdf

Rodriguez-Aguilar G, Orozco-Lugo CL, Vleut I, Vazquez L-B. Influence of urbanization on the occurrence and activity of aerial insectivorous bats. Urban Ecosyst. 2017;20:477–88. https://doi.org/10.1007/s11252-016-0608-3.

Rulli MC, D'Odorico P, Galli N, Hayman D. Land use change and coronavirus emergence risk. medRxiv. 2020:20166090. https://doi.org/10.1101/2020.07.31.20166090.

Safi K, Kerth G. A comparative analysis of specialization and extinction risk in temperate-zone bats. Conserv Biol. 2004;18:1293–303. https://doi.org/10.1111/j.1523-1739.2004.00155.x.

Saghir J, Santoro J. Urbanization in sub-Saharan Africa. Washington, DC: Center for Strategic & International Studies Report; 2018. p. 7. Available from: https://csis-prod.s3.amazonaws.com/s3fs-public/publication/180411_Saghir_UrbanizationAfrica_Web.pdf?o02HMOfqh99KtXG6ObTacIKKmRvk0Owd

Seto KC, Güneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci. 2012;109:16083–8. https://doi.org/10.1073/pnas.1211658109.

Shackleton CM, Shackleton SE, Buiten E, Bird N. The importance of dry woodlands and forests in rural livelihoods and poverty alleviation in South Africa. Forest Policy Econ. 2007;9:558–77. https://doi.org/10.1016/j.forpol.2006.03.004.

Schoeman MC, Cotterill FPD, Taylor PJ, Monadjem A. Using potential distributions to explore environmental correlates of bat species richness in southern Africa: effects of model selection and taxonomy. Curr Zool. 2013;59(3).

Schoeman MC. Light pollution at stadiums favors urban exploiter bats. Anim Conserv. 2016;19:120–30. https://doi.org/10.1111/acv.12220.

Skowno AL, Poole CJ, Raimondo DC, Sink KJ, Van Deventer H, Van Niekerk L, et al. The National Biodiversity Assessment 2018: the status of South Africa's ecosystems and biodiversity. Synthesis report. South African National Biodiversity Institute, an entity of the Department of Environment. Pretoria: Forestry and Fisheries; 2019. p. 1–214. Available from: http://hdl.handle.net/20.500.12143/6362

Slay ME. Protecting caves. In: Encyclopedia of caves. 835: Elsevier; 2019. p. 830. https://doi.org/10.1016/B978-0-12-814124-3.00100-X.

Sokolow SH, Nova N, Pepin KM, Peel AJ, Pulliam JR, Manlove K, et al. Ecological interventions to prevent and manage zoonotic pathogen spillover. Philos Trans R Soc B. 2019;374:20180342. https://doi.org/10.1098/rstb.2018.0342.

South African National Biodiversity Institute. 2018 Terrestrial ecosystem threat status and protection level layer [Vector] 2018. Downloaded on 08 May 2021. Available from: http://bgis.sanbi.org/SpatialDataset/Detail/2675

Stone EL, Jones G, Harris S. Street lighting disturbs commuting bats. Curr Biol. 2009;19:1123–7. https://doi.org/10.1016/j.cub.2009.05.058.

Struebig MJ, Kingston T, Zubaid A, Le Comber SC, Mohd-Adnan A, Turner A, et al. Conservation importance of limestone karst outcrops for Palaeotropical bats in a fragmented landscape. Biol Conserv. 2009;142:2089–96. https://doi.org/10.1016/j.biocon.2009.04.005.

Taylor PJ, Matamba E, Steyn JNK, Nangammbi T, Zepeda-Mendoza ML, Bohmann K. Diet determined by next generation sequencing reveals pest consumption and opportunistic foraging by bats in macadamia orchards in South Africa. Acta Chiropterol. 2017;19:239–54. https://doi.org/10.3161/15081109ACC2017.19.2.003.

Teferi E, Bewket W, Uhlenbrook S, Wenninger J. Understanding recent land use and land cover dynamics in the source region of the upper Blue Nile, Ethiopia: spatially explicit statistical modeling of systematic transitions. Agric Ecosyst Environ. 2013;165:98–117. https://doi.org/10.1016/j.agee.2012.11.007.

Thompson M. South African National Land-Cover 2018 report and accuracy assessment: GeoterraImage SA Pty Ltd; 2019. Availablle from: https://egis.environment.gov.za/data_egis/data_download/current

Van Der Merwe NJ, Thackeray JF, Lee-Thorp JA, Luyt J. The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. J Hum Evol. 2003;44:581–97. https://doi.org/10.1016/S0047-2484(03)00050-2.

Van Wyk A, Prinsloo G. Medicinal plant harvesting, sustainability and cultivation in South Africa. Biol Conserv. 2018;227:335–42. https://doi.org/10.1016/j.biocon.2018.09.018.

Weier SM, Moodley Y, Fraser MF, Linden VM, Grass I, Tscharntke T, et al. Insect pest consumption by bats in macadamia orchards established by molecular diet analyses. Global Ecol Conserv. 2019;18:e00626. https://doi.org/10.1016/j.gecco.2019.e00626.

Wessels KJ, Colgan M, Erasmus BFN, Asner G, Twine W, Mathieu R, et al. Unsustainable fuelwood extraction from south African savannas. Environ Res Lett. 2013;8:014007. https://doi.org/10.1088/1748-9326/8/1/014007.

Wickham H. ggplot2: elegant graphics for data analysis. New York. Available from: http://ggplot2.org. Accessed 22 Oct 2020: Springer-Verlag; 2009. https://doi.org/10.1007/978-0-387-98141-3.

Wordley CF, Sankaran M, Mudappa D, Altringham JD. Bats in the Ghats: agricultural intensification reduces functional diversity and increases trait filtering in a biodiversity hotspot in India. Biol Conserv. 2017;210:48–55. https://doi.org/10.1016/j.biocon.2017.03.026.

Zeale MR, Stone EL, Zeale E, Browne WJ, Harris S, Jones G. Experimentally manipulating light spectra reveals the importance of dark corridors for commuting bats. Glob Chang Biol. 2018;24:5909–18. https://doi.org/10.1111/gcb.14462.

Zhang B, Zhang Q, Feng C, Feng Q, Zhang S. Understanding land use and land cover dynamics from 1976 to 2014 in Yellow River Delta. Land. 2017;6:20. https://doi.org/10.3390/land6010020.