Assessing the early changes of cerebral glucose metabolism via dynamic 18FDG-PET/CT during cardiac arrest

Metabolic Brain Disease - Tập 30 Số 4 - Trang 969-977 - 2015
Ying-Qing Li1,2, Xianghai Liao1, Jianhua Lu2, Rong Liu3, Chunlin Hu1, Gang Dai4, Xiangsong Zhang5, Xiulin Shi5, Xin Li1
1Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
2Emergency Department of Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
3Department of Emergency, The First Affiliated Hospital, Guangzhou Medical College, Guangzhou, People’s Republic of China
4Key Lab on Assisted Circulation of Ministry of Health, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
5Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blennow M, Ingvar M, Lagercrantz H, Stone-Elander S, Eriksson L, Forssberg H, Ericson K, Flodmark O (1995) Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr 84:1289–1295

Blodget T, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242:360–385

Blodgett TM, McCook BM, Federle MP (2006) Positron emission tomography/computed tomography: protocol issues and options. Semin Nucl Med 36:157–158

Chen W (2007) Clinical application of PET in brain tumors. J Nucl Med 48:1468–1481

Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

Cohade C, Wahl RL (2003) Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med 33:228–237

De Lange C, Malinen E, Qu H, Johnsrud K, Skretting A, Saugstad OD, Munkeby BH (2012) Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs. Eur J Nucl Med Mol Imaging 39:792–799

Doyle LW, Nahmias C, Firnau G, Kenyon DB, Garnett ES, Sinclair JC (1983) Regional cerebral glucose metabolism of newborn infants measured by positron emission tomography. Dev Med Child Neurol 25:143–151

Edgren E, Hedstrand U, Kelsey S, Sutton-Tyrrell K, Safar P (1994) Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet 343:1055–1059

Ehlenbach WJ, Barnato AE, Curtis JR, Kreuter W, Koepsell TD, Deyo RA, Stapleton RD (2009) Epidemiologic study of in-hospital cardiopulmonary resuscitation in the elderly. N Engl J Med 361:22–31

Eom KD, Lim CY, Gu SH, Kang BT, Kim YB, Jang DP, Woo EJ, Cho ZH, Park HM (2008) Positron emission tomography features of canine necrotizing meningoencephalitis. Vet Radiol Ultrasound 49:595–599

Fischer M, Hossmann KA (1995) No-reflow after cardiac arrest. Intensive Care Med. 21:132–141

Gilland E, Bona E, Hagberg H (1998) Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab 18:222–228

Hossmann KA, Fischer M, Bockhorst K, Hoehn-Berlage M (1994) NMR imaging of the apparent diffusion coefficient (ADC) for the evaluation of metabolic suppression and recovery after prolonged cerebral ischemia. J Cereb Blood Flow Metab 14:723–731

Idris AH, Becker LB, Ornato JP, Hedges JR, Bircher NG, Chandra NC, Cummins RO, Dick W, Ebmeyer U, Halperin HR, Hazinski MF, Kerber RE, Kern KB, Safar P, Steen PA, Swindle MM, Tsitlik JE, Von Planta I, Wears RL, Weil MH (1996) Utstein-style guidelines for uniform reporting of laboratory CPR research. A statement for healthcare professionals from a task force of the American Heart Association, the American College of Emergency Physicians, the American College of Cardiology, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Institute of Critical Care Medicine, the Safar Center for Resuscitation Research, and the Society for Academic Emergency Medicine, Writing Group. Circulation 94:2324–2336

Kannan S, Chugani HT (2010) Applications of positron emission tomography in the newborn nursery. Semin Perinatol 34:39–45

Keyes Jr JW (1995) SUV: standard uptake or silly useless value? J Nucl Med 36:1836–1839

Leonov Y, Sterz F, Safar P, Johnson DW, Tisherman SA, Oku K (1992) Hypertension with hemodilution prevents multifocal cerebral hypoperfusion after cardiac arrest in dogs. Stroke 23:45–53

Link MS, Atkins DL, Passman RS, Halperin HR, Samson RA, White RD, Cudnik MT, Berg MD, Kudenchuk PJ, Kerber RE (2010) Part 6: electrical therapies: automated external defibrillators, defibrillation, cardioversion, and pacing: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122:706–719

Liu R, Li X, Hu CL, Jiang L, Dai G, Wu GF, Huang GQ, Wei HY, Liao XX (2012) The changes of brain water diffusion and blood flow on diffusion-weighted and perfusion-weighted imaging in a canine model of cardiac arrest. Resuscitation 83:645–651

Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, Shiomi S, Ochi H, Watanabe Y (2003) Assessment of microPET performance in analysing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. NeuroImage 20:2040–2050

Momosaki S, Hatano K, Kawasumi Y, Kato T, Hosoi R, Kobayashi K, Inoue O, Ito K (2004) Rat-PET study without anesthesia: anesthetics modify the dopamine D1 receptor binding in rat brain. Synapse 54:207–213

Nozari A, Rubertsson S, Gedeborg R, Nordgren A, Wiklund L (1999) Maximisation of cerebral blood flow during experimental cardiopulmonary resuscitation does not ameliorate postresuscitation hypoperfusion. Resuscitation 40:27–35

Phelps ME (1991) PET: a biological imaging technique. Neurochem Res 16:929–940

Schwab DA, Wilson JE (1989) Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Proc Natl Acad Sci U S A 86:2563–2567

Suhonen-Polvi H, Kero P, Korvenranta H, Ruotsalainen U, Haaparanta M, Bergman J, Simell O, Wegelius U (1993) Repeated fluorodeoxyglucose positron emission tomography of the brain in infants with suspected hypoxic-ischaemic brain injury. Eur J Nucl Med 20:759–765

Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, Svenningsen NW (2001) Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res 49:495–501

Thorp PS, Levin SD, Garnett ES, Nahmias C, Firnau G, Toi A, Upton AR, Nobbs PT, Sinclair JC (1988) Patterns of cerebral glucose metabolism using 18FDG and positron tomography in the neurologic investigation of the full-term newborn infant. Neuropediatrics 19:146–153

Toorangian S, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR (1990) Routine production of 2-deoxy-2(18F)fluoro-D-glucose by direct nucleophilic exchange on a quaternary ammonium resin. Int J Rad Appl Instrum B 17:273–279

Toyama H, Ichise M, Liow JS, Vines DC, Seneca NM, Modell KJ, Seidel J, Green MV, Innis RB (2004) Evaluation of anesthesia effect on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256

Vannucci RC, Yager JY, Vannucci SJ (1994) Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 14:279–288

Weber WA, Avril N, Schwaiger M (1999) Relevance of positron emission tomography (PET) in oncology. Strahlenther Onkol 175:356–373

Westal RE, Reissman S, Dering G (1996) Out-of-hospital cardiac arrests: an 8-year New York City experience. Am J Emerg Med 14:364–368

Wu GF, Du ZM, Hu CH, Zheng Z, Zhan C, Ma H, Fang D, Ahmed KT, Laham RJ, Hui JC, Lawson WE (2006) Angiogenic effects of long-term enhanced external counterpulsation in a dog model of myocardial infarction. Am J Physiol Heart Circ Physiol 290:248–254

Wu R, Smeele KM, Wyatt E, Ichikawa Y, Eerbeek O, Sun L, Chawla K, Hollmann MW, Nagpal V, Heikkinen S, Laakso M, Jujo K, Wasserstrom JA, Zuurbier CJ, Ardehali H (2011) Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury. Circ Res 108:60–69