Assessing the combined effects of household type and insecticide effectiveness for kala-azar vector control using indoor residual spraying: a case study from North Bihar, India

Parasites and Vectors - Tập 12 - Trang 1-16 - 2019
Rakesh Mandal1, Vijay Kumar1, Shreekant Kesari1, Pradeep Das1
1Department of Vector Biology and Control, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India

Tóm tắt

Indoor residual spraying (IRS) is the mainstay for vector control intervention of visceral leishmaniasis (VL) in India. Little is known on the control effects of IRS on different household types. Here, we assessed if IRS with insecticides has an equal residual and interventional effect on all household types in a village. We also developed a combined spatial-risk map and a sand fly, Phlebotomus argentipes density analytical model based on household characteristics, insecticide susceptibility and IRS-status to explore the spatio-temporal distributions of the vector at a micro-scale level. This study was carried out in two villages of Mahnar block in Vaishali district, Bihar. IRS using two insecticides [dichlorodiphenyltrichloroethane (DDT 50%) and synthetic pyrethroid (SP 5%)] was evaluated for VL-vector (P. argentipes) control. Temporal residual efficacy of the insecticides on different wall-surface types was evaluated using the cone-bioassay technique according to WHO guidelines. Insecticide susceptibility of local P. argentipes was explored using the tube-bioassay method. Pre- and post-IRS sand fly densities were monitored in human dwellings and animal shelters using Centers for Disease Control light-traps installed between 18:00–6:00 h. A best-fit model for sand fly density analysis was developed using multiple logistic regression analysis. Geographical information system based spatial analysis techniques were employed to map the household type distribution of insecticide susceptibility of the vector, and IRS-status of the households to interpret the spatio-temporal distributions of P. argentipes. Phlebotomus argentipes was highly susceptible to SP (100%) but showed high resistance to DDT with a 49.1% mortality rate. SP-IRS has been reported as having better community acceptance than DDT-IRS in all household types. Residual efficacies were varied between wall-surfaces; both insecticides failed to achieve the duration of IRS effectiveness recommended by the WHO. Reduction in P. argentipes counts due to SP-IRS was higher than DDT-IRS between household groups (i.e. sprayed and sentinel), in all intervals post-IRS. Combined spatial risk-maps revealed a better control effect of SP-IRS on sand flies than DDT-IRS in all household types risk-zones. The multilevel logistic regression analysis explored five risk-factors that were strongly associated with the density of P. argentipes. The results contribute to furthering current understanding of IRS-practices for control of visceral leishmaniasis in endemic Bihar, which may help in future actions for improvements.

Tài liệu tham khảo

World Health Organization. Neglected tropical diseases, hidden successes, emerging opportunities. 2009. http://apps.who.int/iris/bitstream/10665/69367/1/WHO_CDS_NTD_2006.2_eng.pdf. Accessed 15 Mar 2014. World Health Organization. Control of the leishmaniases: Report of a meeting of the WHO expert committee on the control of leishmaniases. 2010. http://apps.who.int/iris/bitstream/10665/44412/1/WHO_TRS_949_eng.pdf. Accessed 19 Mar 2014. Singh S. Changing trends in the epidemiology, clinical presentation, and diagnosis of Leishmania-HIV co-infection in India. Int J Inf Dis. 2014;29:103–12. National Vector Borne Disease Control Programme (NVBDCP). Accelerated plan for kala-azar elimination. 2017. https://www.who.int/leishmaniasis/resources/Accelerated-Plan-Kala-azar1-Feb2017_light.pdf. Accessed 17 April 2018. Muniaraj M. The lost hope of elimination of kala-azar (visceral leishmaniasis) by 2010 and cyclic occurrence of its outbreak in India, blame falls on vector control practices or co-infection with human immunodeficiency virus or therapeutic modalities? Trop Parasitol. 2014;4:10–9. Thakur CP. A new strategy for elimination of kala-azar from rural Bihar. Indian J Med Res. 2007;126:447–51. Cameron MM, Acosta-Serrano A, Bern C, Boelaert M, den Boer M, Burza S, et al. Understanding the transmission dynamics of Leishmania donovanito provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India. Parasit Vectors. 2016;9:25. Dhiman RC, Yadav RS. Insecticide resistance in phlebotomine sandflies in Southeast Asia with emphasis on the Indian subcontinent. Infect Dis Poverty. 2016;5:106. Liverpool School of Tropical Medicine. Supporting the Bihar VL Elimination Programme. 2015. https://www.lstmed.ac.uk/sites/default/files/content/publications/attachments/Supporting%20the%20Bihar%20VL%20Elimination%20Programme_0.pdf. Accessed 24 July 2018. WHO. Visceral leishmaniasis: WHO publishes validation document as countries approach elimination. Geneva: World Health Organization; 2016. https://www.who.int/neglected_diseases/news/Visceral_leishmaniasis_WHO_publishes_validation_document/en/. Accessed 19 Mar 2017. Chowdhury R, Huda MM, Kumar V, Das P, Joshi AB, Banjara MJ, et al. The Indian and Nepalese programmes of indoor residual spraying for the elimination of visceral leishmaniasis: performance and effectiveness. Ann Trop Med Parasitol. 2011;105(1):31–45. Picado A, Dash AP, Bhattacharya S, Boelaert M. Vector control interventions for visceral leishmaniasis elimination initiative in South Asia, 2005–2010. Indian J Med Res. 2012;136:22–31. Ostyn B, Vanlerberghe V, Picado A, Dinesh DS, Sundar S, Davies C, et al. Vector control by insecticide-treated nets in the fight against visceral leishmaniasis in the Indian subcontinent, what is the evidence? Trop Med Int Health. 2008;13:1073–85. Le Rutte EA, Chapman LA, Coffeng LE, Jervis S, Hasker EC, Dwivedi S, Karthick M, Das A, Mahapatra T, Chaudhuri I, et al. Elimination of visceral leishmaniasis in the Indian subcontinent: a comparison of predictions from three transmission models. Epidemics. 2017;18:67–80. Boelaert M, Meheus F, Sanchez A, Singh SP, Vanlerberghe V, Picado A, et al. The poorest of the poor: a poverty appraisal of households affected by visceral leishmaniasis in Bihar, India. Trop Med Int Heal. 2009;14:639–44. Hasker E, Singh SP, Malaviya P, Picado A, Gidwani K, Singh RP, et al. Visceral leishmaniasis in rural Bihar, India. Emerg Infect Dis. 2012;18:1662–4. Mandal R, Kesari S, Kumar V, Das P. Trends in spatio-temporal dynamics of visceral leishmaniasis cases in a highly-endemic focus of Bihar, India: an investigation based on GIS tools. Parasit Vectors. 2018;11:220. Babalola MA. Application of GIS-Based Multi-Criteria Decision technique in exploration of suitable site options for anaerobic digestion of food and biodegradable waste in Oita City, Japan. Environments. 2018;5:77. Knoop H. International standardization and management of GIS-activities. Int Arch Photogramm Remote Sens. 2000;33(6):164–71. Carroll LN. Visualization and analytics tools for infectious disease epidemiology: a systematic review. J Biomed Inform. 2014;51:287–98. Kondo MC, Bream KD, Barg FK, Branas CC. A random spatial sampling method in a rural developing nation. BMC Public Health. 2014;14:338. Wampler PJ, Rediske RR, Molla AR. Using ArcMap, Google Earth, and Global Positioning Systems to select and locate random households in rural Haiti. Int J Health Geogr. 2013;12:3. Burke M, Heft-Neal S, Bendavid E. Sources of variation in under-5 mortality across sub-Saharan Africa: a spatial analysis. Lancet Glob Health. 2016;4:e936–45. Fletcher-Lartey SM, Caprarelli G. Application of GIS technology in public health: successes and challenges. Parasitology. 2016;143:401–15. Musa GJ, Chiang PH, Sylk T, Bavley R, Keating W, Lakew B, et al. Use of GIS mapping as a public health tool - from cholera to cancer. Health Serv Insights. 2013;6:111–6. Mandal R, Das P, Kumar V, Kesari S. Spatial distribution of Phlebotomus argentipes(Diptera: Psychodidae) in eastern India, a case study evaluating multispatial resolution remotely sensed environmental evidence and microclimatic data. J Med Entomol. 2017;54:844–53. WHO. Manual for indoor residual spraying: application of residual sprays for vector control. Geneva: World Health Organization; 2007. http://apps.who.int/iris/bitstream/handle/10665/69664/WHO_CDS_NTD_WHOPES_GCDPP_2007.3_eng.pdf;jsessionid=D843FE7D598B75A2A211A5790DA94D9B?sequence=1. Accessed 14 Mar 2015. WHO. Monitoring and evaluation tool kit for indoor residual spraying: kala-azar elimination in Bangladesh, India and Nepal. 2010. https://www.who.int/tdr/publications/tdr-research-publications/irs_toolkit/en/. Accessed 11 May 2015. Kesari S, Bhunia GS, Kumar V, Jeyaram A, Ranjan A, Das P. Study of house-level risk factors associated in the transmission of Indian kala-azar. Parasit Vectors. 2010;3:94. Malaviya P, Hasker E, Picado A, Mishra M, Van Geertruyden JP, Das ML, Boelaert M, Sundar S. Exposure to Phlebotomus argentipes (Diptera, Psychodidae, Phlebotominae) sand flies in rural areas of Bihar, India: the role of housing conditions. PLoS One. 2014;9:e106771. Ilango K. A taxonomic reassessment of the Phlebotomus argentipes species complex (Diptera: Psychodidae: Phlebotominae). J Med Entomol. 2010;47:1–15. Huda MM, Mondal D, Kumar V, Das P, Sharma SN, Das ML, et al. Toolkit for monitoring and evaluation of indoor residual spraying for visceral leishmaniasis control in the Indian subcontinent: application and results. J Trop Med. 2011;2011:876742. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2013. https://www.who.int/malaria/publications/atoz/9789241511575/en/. Accessed 23 Mar 2015. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2016. https://www.who.int/malaria/publications/atoz/9789241511575/en/. Accessed 30 Jun 2016. Lu GY, Wong DW. An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci. 2008;34:1044–55. ArcGIS for desktop. How weighted overlay works. 2015. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-weighted-overlay-works.htm. Accessed 30 Jun 2016. Kesari S, Mandal R, Bhunia GS, Kumar V, Das P. Spatial distribution of P. argentipesin association with agricultural surrounding environment in North Bihar, India. J Infect Dev Ctries. 2014;8:358–64. Parasitol Trop. An e-mail interview with Dr Pradeep Das. Trop Parasitol. 2018;8:127–31. Dinesh DS, Das ML, Picado A, Roy L, Rijal S, Singh SP, et al. Insecticide susceptibility of Phlebotomus argentipes in visceral leishmaniasis endemic districts in India and Nepal. PLoS Negl Trop Dis. 2010;4:e859. Singh RK, Mittal PK, Dhiman RC. Insecticide susceptibility status of Phlebotomus argentipes, a vector of visceral leishmaniasis in different foci in three states of India. J Vector Borne Dis. 2012;49:254–7. WHO. Pesticide Evaluation Scheme (WHOPES). Geneva: World Health Organization; 2001. https://www.who.int/whopes/resources/who_cds_whopes_2001.3/en/. Accessed 7 Jun 2014. WHO. WHO recommended insecticides for indoor residual spraying against malaria vectors. Geneva: World Health Organization; 2018. https://www.who.int/neglected_diseases/vector_ecology/vector-control/Insecticides_IRS_22_September_2018.pdf. Accessed 22 Oct 2018. Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbe C, Yangalbe-Kalnone E, et al. Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J. 2009;8:299. WHO. Vector control for malaria and other vector mosquito-borne diseases: report of a WHO group. Geneva: World Health Organization; 1995. http://apps.who.int/iris/bitstream/10665/41726/1/WHO_TRS_857.pdf. Accessed 3 Jul 2018. Etang J, Nwane P, Mbida JA, Piameu M, Manga B, Souop D, et al. Variations of insecticide residual bio-efficacy on different types of walls: results from community-based trial in South Cameroon. Malar J. 2011;11:378. Santos RLC, da Silva Fayal A, Aguiar AEF, Vieira DBR, Povoa MM. Evaluation of residual effect of pyrethroids on Anopheles in Brazilian Amazon. Rev Saude Publica. 2007;41:2. Mulambalah CS, Siamba DN, Ngeiywa MM, Vulule JM. Evaluation of lambda-cyhalothrin persistence on different indoor surfaces in a malaria epidemic-prone area in Kenya. Res J Biol Sci. 2010;5:258–63. Djenontin A, Aimihoue O, Sezonlin M, Damien GB, Osse R, Soukou B, et al. The residual life of bendiocarb on different substrates under laboratory and field conditions in Benin, western Africa. BMC Res Notes. 2013;6:458. Sibanda MM, Focke WW, Labuschagne FJ, Moyo L, Nhlapo N, Maity A, et al. Degradation of insecticides used for indoor spraying in malaria control and possible solutions. Malar J. 2011;10:307. Moiroux N, Djènontin A, Zogo B, Bouraima A, Sidick I, Pigeon O, Pennetier C. Small-scale field testing of alpha-cypermethrin water-dispersible granules in comparison with the recommended wettable powder formulation for indoor residual spraying against malaria vectors in Benin. Parasit Vectors. 2018;11:508. Thanispong K, Achee NL, Bangs MJ, Grieco JP, Suwonkerd W, Prabaripai A, et al. Irritancy and repellency behavioral responses of three strains ofAedes aegypti exposed to DDT and alpha-cypermethrin. J Med Entomol. 2009;46:1407–14. Grieco JP, Achee NL, Chareonviriyaphap T, Suwonkerd W, Chauhan K, Sardelis MR, et al. A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS ONE. 2007;2:e716.