Assessing rainwater quality treated via a green roof system

Springer Science and Business Media LLC - Tập 24 - Trang 645-660 - 2021
Thomas Schatzmayr Welp Sá1, Mohammad K. Najjar1, Ahmed W. A. Hammad2, Elaine Vazquez1, Assed Haddad1
1Departamento de Construção Civil, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2UNSW Built Environment, UNSW Sydney, Sydney, Australia

Tóm tắt

The shortage of water worldwide is increasingly worrying. Studies in the field suggest that sustainable water resource management via water recycling is fundamental to alleviate the issue. The use of rainwater is an important alternative source that must be considered, mainly, in the water crisis facing the planet. When integrated with the concept of green roofs, the capturing and treatment of rainwater in these structures becomes an even more ecological and sustainable practice. The water drained by the roof can be used for non-potable uses, such as flushing toilet bowls. One of the main concerns when using rainwater, even for non-potable uses, is the quality of the water available, so as not to put users' health at risk. In this way, the present work proposes to experimentally analyze the quality of rainwater drained in a green roof prototype for reuse purposes. The green roof prototype was installed on an experimental bench. After each rain event (four in total), two water samples were collected in the following situations: rainwater captured directly by a container next to the bench and rainwater, drained by the green roof prototype, captured by a container through existing drains at the base of the prototype. The analyses of the collected samples were carried out at the Environmental Engineering Laboratory (LEMA/UFRJ) and performed according to the Standard Methods for the Examination of Water and Wastewater. Specifically, the experiments examine physicochemical and biological parameters following a rain event on a green roof prototype for sanitary use. Experimental results that were observed and analyzed include color, turbidity, pH, ammonia nitrogen, nitrite, nitrate, orthophosphate, total coliforms, and thermotolerant coliforms to indicate the rainwater quality from green roofs. The majority of parameters assessed were within the value thresholds indicated by the Brazilian standards, while the results of orthophosphate, fecal coliforms, color, and turbidity were not. The greatest divergence is in the concentration of orthophosphate, where a concentration of 10.88 mg/L was obtained in this experimental study, while other authors present values of 0.1 and 0.01 mg/L. Total coliforms also presented high values, but within the expected range. Comparisons with technical documents and international references related to water quality to identify possibilities of the use of rainwater were also conducted. Results indicate that the water quality has the same order of quantity for turbidity, nitrite, and ammonia nitrogen parameters across the standards. Based on such observations, filtration and disinfection processes are therefore required in the green roof system for the use of rainwater for sanitary. Finally, the experimental study of rainwater quality on the green roof presented similar results comparing with international references. The use of green roofs combined with the use of rainwater demonstrates the potential and benefits as an alternative to face the water crisis.

Tài liệu tham khảo

ABNT NBR 15527 (2019) Água de chuva: aproveitamento de coberturas em áreas urbanas para fins não potáveis—ABNT NBR 15527:2019—Requisitos. Norma Brasileira. Rio de Janeiro Al-Damkhi AM, Abdul-Wahab SA, Al-Nafisi AS (2009) On the need to reconsider water management in Kuwait. Clean Technol Environ Policy 11:379. https://doi.org/10.1007/s10098-009-0201-z Berndtsson JC (2010) Green roof performance towards management of runoff water quantity and quality: A review. Ecol Eng 32(4):351–360 BRASIL (1934) Decreto n 24.643, de 10 de julho de 1934. Decreta o Código das Águas. Brasília, DF, 1934. Accessed 20 March 2017 Bruno M (2016) Projeto Experimental de Telhado Verde para Estudo de Retenção e Retardo de Águas Pluviais. Undergraduate Project, Universidade Federal do Rio de Janeiro, Rio de Janeiro Budel MA (2014) Estudo Comparativo da Qualidade da Água de Chuva Coletada em Cobertura Convencional e em Telhado Verde, Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia Civil/UTFPR, Curitiba, PR, Brasil Burns MJ, Fletcher TD, Duncan HP, Hatt BE, Ladson AR, Walsh CJ (2015) The Performance of rainwater tanks for stormwater retention and water supply at the household scale: an empirical study. Hydrol Process 29(1):152–160. https://doi.org/10.1002/hyp.10142 Burszta-Adamiak E (2020) The influence of green roofs on runoff quality 6 years of experience. Desalin Water Treat 186:394–405. https://doi.org/10.5004/dwt.2020.25448 Busch BF (2017) Análise da contribuição da intercepção vegetal e da evapotranspiração em um telhado verde composto por bromélias. Undergraduate Project, Universidade Federal do Rio de Janeiro, Rio de Janeiro Castelo L, Macedo MN (2016) Large-scale degradation of Amazonian freshwater ecosystems. Glob Change Biol 22(3):990–1007. https://doi.org/10.1111/gcb.13173 Charles H, Godfray J, Garnett T (2014) Food security and sustainable intensification. Phil Trans R Soc B. https://doi.org/10.1098/rstb.2012.0273 Chen Z, Ngo HH, Guo W, Wang X (2013) Analysis of Sydney’s recycled water schemes. Front Environ Sci Eng 7(4):608–615 Cisneros J (2014) Water recycling and reuse: an overview. Water Reclam Sustain Elsevier 7:431–454. https://doi.org/10.1016/B978-0-12-411645-0.00018-3 CONAMA 357 (2005) Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências Coutts AM, Daly E, Beringer J, Tapper NJ (2013) Assessing pratical measures to reduce urban heat: green and cool roofs. Built Environment -Elsevier 70(1):266–276. https://doi.org/10.1016/j.buildenv.2013.08.021 EMBRAPA (2010), Qualidade da água para irrigação. Cruz das Almas, Bahia Emec S, Bilge P, Seliger G (2015) Design of production systems with hybrid energy and water generation for sustainable value creation. Clean Technol Environ Policy 17:1807–1829. https://doi.org/10.1007/s10098-015-0947-4 Ferrans P, Rey CV, Pérez G, Rodriguez JP, Díaz-Granados M (2018) Effect of green roof configuration and hydrological variables on runoff water quantity and quality. Water—MDPI 10(7):960. https://doi.org/10.3390/w10070960 Falkenmark M, Rockström J, Karlberg L (2009) Present and future water requirements for feeding humanity. Food Sec 1:59–69. https://doi.org/10.1007/s12571-008-0003-x Galarza-Molina S, Torres A, Rengifo P, Puentes A, Cárcamo-Hernández E, Méndez-Fajardo S, Devia C (2016) The benefits of an eco-productive green roof in Bogota Colombia. Indoor Bulit Environ 26(8):1135–1143. https://doi.org/10.1177/1420326X16665896 García-Montoya M, Ponce-Ortega JM, Nápoles-Rivera F (2015) Optimal design of reusing water systems in a housing complex. Clean Technol Environ Policy 17:343–357. https://doi.org/10.1007/s10098-014-0784-x Garrido Neto PDSG (2012) Telhados verdes associados com sistema de aproveitamento de água de chuva: Elaboração de dois projetos para futuros estudos sobre esta técnica compensatória em drenagem urbana e prática sustentável na construção civil. Undergraduate Project, Universidade Federal do Rio de Janeiro. Rio de Janeir Garrido Neto PS (2016) Telhados Verdes como Técnica Compensatória em Drenagem Urbana na Cidade do Rio de Janeiro: Estudo Experimental e Avaliação de sua Adoção na Bacia do Rio Joana a partir do uso de Modelagem Matemática. M.Sc. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro Gois EHB, Rios CAS, Costanzi RN (2015) Evaluation of water conservation and reuse: a case study of a shopping mall in southern Brazil. J Cl Prod, Elsevier 96(1):263–271. https://doi.org/10.1016/j.jclepro.2014.08.097 Green PA, Vorosmarty CJ, Harrison I, Farrell T, Sáenz L, Fekete BM (2015) Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Glob Environ Change—Elsevier 34:108–118. https://doi.org/10.1016/j.gloenvcha.2015.06.007 Gregoire BG, Clausen JC (2011) Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol Eng—Elsevier 37(6):963–969. https://doi.org/10.1016/j.ecoleng.2011.02.004 Gupta N, Pandey P, Hussain J (2017) Effect of physicochemical and biological parameters on the quality of river water of Narmada Madhya Pradesh, India. Water Sci. https://doi.org/10.1016/j.wsj.2017.03.002 Jia X, Duić N (2021) Advanced methods and technologies towards environmental sustainability. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-021-02024-z Jordão EP, Volschan I (2005) Procedimentos Analíticos e Resultados no Monitoramento do Tratamento de Esgotos. 23o Congresso Brasileiro de Engenharia Sanitária e Ambiental. Campo Grande/MS Kasmin H, Stovin V, De-Ville MR (2014) Evaluation of green roof hydrological performance in a Malaysian context. In: Proceedings of the 13th international congress on Urban Drainage, Kuching, Sarawak, MY Kok KH, Sidek LM, Chow MF, Abidin MRZ, Basri H, Hayder G (2016) Evaluation of green roof performances for urban stormwater quantity and quality controls. Int J River Basin Manag 14(1):1–7. https://doi.org/10.1080/15715124.2015.1048456 Krebs LF, Sattler MA (2010) Coberturas vivas extensivas: Análise da utilização em projetos na região metropolitana de Porto Alegre e Serra Gaúcha”, XIII Encontro Nacional de Tecnologia do Ambiente Construído, Canela, RS, Brasil Li Y, Babcock RW (2014) Green roofs against pollution and climate change. a review. Agron Sustain Dev 34:695–705 Liu R, Stanford R, Deng Y (2020) The influence of extensive green roofs on rainwater runoff quality: a field-scale study in southwest China. Environ Sci Pollut Res 27:12932–12941. https://doi.org/10.1007/s11356-019-06151-5 Loucks DP, Beek EV, Stedinger JR, Dijkman JPN, Vilars MT (2017) Water resource systems planning and management: an introduction to methods, models, and applications. Springer, Switzerland, p 680 Manjare SA, Vhanalakar SA, Muley DV (2010) Analysis of water quality using physicochemical parameters Tamdalge tank in Kolhapur district Maharashtra. Int J Adv Biotechnol Res 1(2):115–119 Min JYL, Han JLM (2015) A pilot study to evaluate runoff quantity from green roofs. J Environ Manag Elsevier 152(1):171–176. https://doi.org/10.1016/j.jenvman.2015.01.028 MINISTÉRIO DA SAÚDE, Portaria No 2.914 (2011) Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Brasília Mirzababaie MJ, Karrabi M (2019) Implementing green roof technology: an investigation of the effects on energy demand, fuel consumption, and pollutant emission. Clean Technol Environ Policy 21:1873–1881. https://doi.org/10.1007/s10098-019-01742-9 Othmani B, Rasteiro MG, Khadhraoui M (2020) Toward green technology: a review on some efficient model plant-based coagulants/flocculants for freshwater and wastewater remediation. Clean Technol Environ Policy 22:1025–1040. https://doi.org/10.1007/s10098-020-01858-3 Pontes KLF (2013) Estudo de caso da construção de um protótipo experimental para ensaios sobre técnicas compensatórias em drenagem urbana: pavimentos permeáveis e telhados verdes. Undergraduate Project, Universidade Federal do Rio de Janeiro, Rio de Janeiro Pradeep V, Deepika C, Urvi G, Hitesh S (2011) Organically polluted lake by investigating different physical and chemical parameters. Int J Res Chem Environ 2(1):105–111 Rowe DB (2011) Green roofs as a means of pollution abatement. Environ Pollut 159(8–9):2100–2110. https://doi.org/10.1016/j.envpol.2010.10.029 Seidl M, Gromaire MC, Saad M, De Gouvello B (2013) Effect of substrate depth and rain-event history on the pollutant abatement of green roofs. Environ Pollut 183:195–203. https://doi.org/10.1016/j.envpol.2013.05.026 Shafique M, Kim R, Rafiq M (2018) Green roof benefits, opportunities and challenges: a review. Renew Sustain Energy Rev 90(757–773):0321. https://doi.org/10.1016/j.rser.2018.04.006 Silva M, Najjar MK, Hammad AWA, Haddad AN, Vazquez EG (2020) Assessing the retention capacity of an experimental green roof prototype. Water 12:90 Speak AF, Rothwell JJ, Lindley JL, Smith CL (2013) Rainwater runoff retention on an aged intensive green roof. Sci Total Environ—Elsevier 461–462(1):28–38. https://doi.org/10.1016/j.scitotenv.2013.04.085 Teemusk A, Mander Ü (2011) The influence of green roofs on runoff water quality: a case study from Estonia. Water Resour Manag. https://doi.org/10.1007/s11269-011-9877-z Teixeira PC, Ilha MSO, Reis RPA (2011), Análise da qualidade da água de chuva drenada por coberturas verdes: Estudo piloto, XII Simpósio Nacional de Sistemas Prediais, Passo Fundo, RS, Brasil Theodoros S, Catalina S, Raimund B (2019) The nexus: estimation of water consumption for hydropower in Brazil. J Sust Dev Energy Water Environ Syst 7(1):122–138 USEPA (2012) United states environmental protection agency, Guidelines for Water Reuse, Washington, D.C., EUA Vijayaraghavan K, Joshi UM, Balasubramanian R (2012) A field study to evaluate runoff quality from green roofs, Water Research, 46 (4): 1337-1345, ISSN 0043-1354, https://doi.org/10.1016/j.watres.2011.12.050 Welp Sá TS, Najjar MK, Hammad A, Haddad A, Vazquez E (2020) Water quality from green roofs: an experimental study by 2nd Latin American SDEWES Conference on Sustainable Development of Energy, Water and Environment Systems Buenos Aires, Argentina