Assessing impact of varying climatic conditions on distribution of Buchanania Cochinchinensis in Jharkhand using species distribution modeling approach

Current Research in Environmental Sustainability - Tập 3 - Trang 100025 - 2021
Shambhu Nath Mishra1, Dharmendra Kumar1, Basant Kumar1, Sharad Tiwari1
1Institute of Forest Productivity (Indian Council of Forestry Research and Education) Aranyodaya, NH 23, Lalgutwa, Ranchi 835303, Jharkhand, India

Tài liệu tham khảo

Adhikari, 2012, Habitat distribution modeling for reintroduction of Ilex khasiana Purk. A critically endangered tree species of North-Eastern India, Ecol. Eng., 40, 37, 10.1016/j.ecoleng.2011.12.004 Araujo, 2006, Five (or so) challenges for species distribution modeling, J. Biogeogr., 33, 1677, 10.1111/j.1365-2699.2006.01584.x Araujo, 2004, Would climate change drive species out of reserves? An assessment of existing reserve-selection methods, Glob. Chang. Biol., 10, 1618, 10.1111/j.1365-2486.2004.00828.x Benito, 2009, Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses, Biodivers. Conserv., 18, 2509, 10.1007/s10531-009-9604-8 Busby, 1986, A biogeographical analysis of Nothofagus cunninghamii (Hook.) Oerst. In South-Eastern Australia, Aust. J. Ecol., 11, 1, 10.1111/j.1442-9993.1986.tb00912.x Chefaoui, 2005, Potential distribution modeling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species, Biol. Conserv., 122, 327, 10.1016/j.biocon.2004.08.005 Croteau, 2010, Causes and Consequences of Dispersal in Plants and animals, Nat. Educ. Knowl., 3, 12 Elith, 2009, Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models, Ecography, 32, 66, 10.1111/j.1600-0587.2008.05505.x Elith, 2006, Novel methods improve prediction of species distributions from occurrence data, Ecography, 29, 129, 10.1111/j.2006.0906-7590.04596.x FAO Ferrier, 2002, Extended statistical approaches to modeling spatial patterns in biodiversity in Northeast New South Wales. II. Community-level modeling, Biodivers. Conserv., 11, 2309, 10.1023/A:1021374009951 Fick, 2017, Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 10.1002/joc.5086 Fielding, 1997, A review of methods for the assessment of prediction errors in conservation presence/ absence models, Environ. Conserv., 24, 38, 10.1017/S0376892997000088 Francisco, 2020, Warming enhances growth but does not affect plant interactions in an alpine cushion species, Perspect. Plant Ecol. Evol. System., 44, 125530, 10.1016/j.ppees.2020.125530 FSI, 2011 Gebrewahid, 2020 Graham, 2006, A comparison of methods for mapping species ranges and species richness, Glob. Ecol. Biogeogr., 15, 578, 10.1111/j.1466-8238.2006.00257.x Graham, 2004, Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs, Evolution, 58, 1781, 10.1111/j.0014-3820.2004.tb00461.x Hijmans, 2001, Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS, Plant Genet. Resourc. Newslett., 127, 15 Hijmans, 2005, Very high-resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276 Jueterbock, 2016, The fate of the Arctic Seaweed Focus distitches under climate change: an ecological niche modeling approach, Ecol. Evol., 6, 1712, 10.1002/ece3.2001 Kala, 2009, Aboriginal uses and management ofethnobotanical species in deciduous forests of Chhattisgarh state in India, J. Ethnobiol. Ethnomed., 4, 20, 10.1186/1746-4269-5-20 Kerr, 2001, Butterfly species richness patterns in Canada: energy, heterogeneity and the potential consequences of climate change, Conserv. Ecol., 5, 10 Kerr, 2001, Remotely sensed habitat diversity predicts butterfly richness and community similarity in Canada, Proc. Natl. Acad. Sci. U. S. A., 98, 11365, 10.1073/pnas.201398398 Kershaw, 1973, 308 Khatoon, 2015, Nutraceutical potential and phytochemical screening of Buchanania lanzan, an underutilized exotic Indian nut and its use as a source of functional food, J. Pharmacognosy Phytochem., 4, 87 Kirtikar, 1935, Indian MedicinalPlants: Lalit Mohan Basu, Allahabad, 3, 1964 Kirtikar, 2005, Vol IV, 660 Kotta, 2019, Integrating experimental and distribution data to predict future species patterns, SciRep, 9, 1821 Kumar, 2009, Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monoticola in New Caledonia, J. Ecol. Nat. Environ., 1, 94 Lobo, 2008, AUC: a misleading measure of the performance of predictive distribution models, Glob. Ecol. Biogeogr., 17, 145, 10.1111/j.1466-8238.2007.00358.x Ma, 2018, Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model, BMC Ecol., 18, 10, 10.1186/s12898-018-0165-0 Martinez, 2006, Are threatened lichen species well-protected in Spain? Effectiveness of a protected areas network, Biol. Conserv., 133, 500, 10.1016/j.biocon.2006.08.003 Mishra, 1968 Nix, 1986, A biogeographic analysis of Australian elapid snakes, 4 Ortega-Huerta, 2008, Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods, Revista Mexicana de Biodiversidad, 79, 205 Pearson, 2007, Predicting species’ distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, J. Biogeogr., 34, 102, 10.1111/j.1365-2699.2006.01594.x Petare, 2016, Livelihood system assessment and planning for poverty alleviation: a case of rainfed agriculture in Jharkhand, Curr. Sci., 110, 1773, 10.18520/cs/v110/i9/1773-1783 Peterson, 2007, Uses and requirements of ecological niche models and related distributional models, Biodivers. Inform., 3, 59 Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026 Pradhan, 2016, Strengthening Maxent modeling through screening of redundant explanatory Bioclimatic Variables with Variance inflation factor analysis, Researcher, 8, 29 Puri, 2000, Immuno stimulant activity of dry fruits and plant materials used in Indian traditional medical system for mothers after child birth and invalids, J. Ethnopharmacol., 71, 89, 10.1016/S0378-8741(99)00181-6 Qin, 2017, Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China, Glob. Ecol. Conserv., 10, 139, 10.1016/j.gecco.2017.02.004 Saran, 2010, Geospatial modeling of Brown Oak (Quercus semecarpifolia) habitats in the Kumaun Himalayan under climate change scenario, J. Ind. Soc. Remote Sens., 38, 535, 10.1007/s12524-010-0038-2 Sharma, 2012, Scientific Harvesting for Quality seed Collection of Buchanania cochinchinensis Spreng for its conservation and sustainable management – case study of Chhindwara, Madhya Pradesh, India, Int. J. Bio-Sci. Bio-Technol., 4, 65 Shende, 2005, Multiple shoot formation and plant regeneration of a commercially-useful tropical plant, Buchanania cochinchinensis (Spreng), Plant Biotechnol., 22, 59, 10.5511/plantbiotechnology.22.59 Siddiqui, 2014, Buchanania cochinchinensis: a species of enormous potentials, World J. Pharm. Pharm. Sci., 2, 374 Sinclair, 2010, How useful are species distribution models for managing biodiversity under future climates?, Ecol. Soc., 15, 8, 10.5751/ES-03089-150108 Singh, 2014 Wang, 2018, Modeling and mapping the current and future distribution of Pseudomonas syringae pv. Actinidiae under climate change in China, PLoS One, 13 Warokar, 2010, Anti-inflammatory and Antioxidant Activities of Methanolic extract of Buchanania lanzan Kernel, Ind. J. Pharmac. Educ. Res., 44, 363 Warren, 2010, ENM Tools: a toolbox for comparative studies of environmental niche models, Ecography, 33, 607 Wei, 2018, Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China, Glob. Ecol. Conserv., 16 White, 2006, Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century, Ecography, 29, 908, 10.1111/j.2006.0906-7590.04685.x Yanga, 2012, Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills, Ecol. Eng., 51, 83, 10.1016/j.ecoleng.2012.12.004