Assessing creative thinking in design-based learning

International Journal of Technology and Design Education - Tập 19 Số 1 - Trang 55-65 - 2009
Yaron Doppelt1
1University of Pittsburg, 815 LRDC, Pittsburgh, PA, 15260, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barak, M., & Doppelt, Y. (1999). Integrating the CoRT program for creative thinking into a project-based technology curriculum. Research in Science and Technological Education, 17(2), 139–151.

Barak, M., & Doppelt, Y. (2000). Using portfolios to enhance creative thinking. Journal of Technology Studies, 26(2), 16–24.

Barak, M., Eisenberg, E., & Harel, O. (1995). ‘What’s in the calculator?’ An introductory project for technology studies. Research in Science and Technological Education, 12(2), 147–154.

Barak, M., & Maymon T. (1998). Aspects of teamwork observed in a technological task in junior high schools. Journal of Technology Education, 9(2), 3–17.

Barak, M., Waks, S., & Doppelt Y. (2000). Majoring in technology studies at high school and fostering learning. Learning Environment Research, 3, 135–158

Barlex, D. (1994). Organising project work, In: F. Banks (Ed.), Teaching technology, (pp. 124–143). London: Routledge.

Barlex, D. (2002). The relationship between science and design and technology in the secondary school curriculum in England. In: I. Mottier, & M. J. de Vries (Eds.), Proceedings of the PATT12 Conference, 3–12.

Collings, J. E. (1985). Scientific thinking through the development of formal operation training, in the cognitive restructuring aspect of field-independence. Research in Science and Technological Education, 3, 145–152.

Collins, A. (1991). Portfolio for biology teacher assessment. Journal of School Personnel Evaluation in Education, 5, 147–167.

De Bono, E. (1986). The CoRT thinking program (2nd ed.). Oxford: Pergamon Press.

De Bono, E. (1996). Master workshop of de Bono’s thinking course. Jerusalem: Branco Weiss Institute for the Development of Thinking.

de Vries, M. J. (1993). Design methodology and relationships with science: Introduction. In: M. J. deVries, N. Cross, & D. P. Grant (Eds.), Design methodology and relationship with science (pp. 1–14). Boston: Kluwer Academic Publishers (in cooperation with NATO Scientific Affairs Division).

de Vries, M. J. (1996). Technology education: Beyond the “technology is applied science” paradigm. Journal of Technology Education, 8(1), 7–15.

de Vries, M. J. (1997). Technology assessment and the assessment of technology education. In: I.␣Mottier & M. J. de Vries (Eds.), Proceedings of PATT8 Conference: Assessing Technology Education (pp. 373–378). PATT Foundation, Eindhoven University of Technology, The Netherlands.

Denton, H. (1994). The role of group/team work in design and technology: Some possibilities and problems. In: F. Banks. (Ed.), Teaching technology (pp. 145–151). London: Routledge.

Dewey, J. (1977). Experience and education (20th printing), New York: Macmillan Collier.

Doppelt, Y. (2000, June). Developing pupils’ competencies through creative thinking in technological projects, Paper presented to The 28th Israel Conference on Mechanical Engineering, Ben-Gurion University of the Negev Beer-Sheva, Israel.

Doppelt, Y. (2003). Implementing and assessing project-based learning in a flexible environment. The International Journal of Technology and Design Education, 13(3), 255–272.

Doppelt, Y. (2004). The impact of the characteristics of science–technology learning environment: Pupils’ perceptions and gender differences. Learning environment Research, 7(3), 271–293.

Doppelt, Y. (2005). Assessment of project-based learning in a MECHATRONICS context. Journal of Technology Education, 16(2), 7–21.

Doppelt, Y., & Armon, U. (1999, August). LEGO/Logo (Multi-Techno-Logo) as an authentic environment for improving learning skills of low-achievers, Paper presented at the Euro-Logo Conference, Sofia, Bulgaria.

Doppelt, Y., & Barak, M. (2002). Pupils identify key aspects and outcomes of a technological learning environment. Journal of Technology Studies, 28(1), 12–18.

Doppelt, Y., Mehalik, M. M., & Schunn, D. C. (2005, April). A close-knit collaboration between researchers and teachers for developing and implementing a design-based science module. National Association of Research in Science Teaching (NARST), Dallas, TX.

Ennis, R. H. (1989). Critical thinking and subject specificity: Clarification and needed research. Educational Researcher, 18(3), 4–10.

Glaser, R. (1993). Education and thinking: The role of knowledge. In: R. McCormick, P. Murphy, & M. Harrison (Eds.), Teaching and Learning Technology (pp. 91–111). Wokingham, England: Addison-Wesley in association with The Open University.

Gredler, E. M. (1995). Implications of portfolio assessment for programme evaluation. Studies in Educational Evaluation, 21, 431–437, Elsevier Science Ltd.

Kolodner, J. L., Crismond, D., Gray, J., Holbrook, J., & Puntambekar, S. (1998). Learning by design from theory to practice. Proceedings of the International Conference of the Learning Sciences (ICLS 98) (pp. 16–22). Charlottesville, VA: AACE.

McCormick R., & Murphy P. (1994) Learning the processes in technology, Paper presented to the British Educational Research Association Annual Conference, Oxford University, England.

NSPE, National Society of Professional Engineers, (1992). Engineering Education Issues: Report on surveys of opinions by engineering deans and employers of engineering graduates on the first professional degree, NSPE Publication No. 3059, NSPE, 1420 King Street, Alexandria, VA 22314–2794.

Papert, S. (1980). Mindstorms, children, computers and powerful ideas. New York: Basic Books.

Resnick, M., & Ocko, S. (1991). LEGO/Logo: Learning through and about design. In: I. Harel, & S.␣Papert (Eds.), Constructionism (pp. 141–150). New Jersey: Ablex Publishing Corporation Norwood.

Seiler, G., Tobin, K., & Sokolic, J. (2001). Design, technology and science: Sites for learning, resistance, and social reproduction in urban schools. Journal of Research in Science Teaching, 38(7), 746–767.

Waks, S. (1995). Curriculum design: From an art towards a science. Hamburg: Tempus Publicationss.

Wolf, D. (1989). Portfolio assessment: Sampling student’s work. Educational Leadership, 45(4), 35–39.

Zohar, A., & Tamir, P. (1993). Incorporating critical thinking within a regular high school biology curriculum. School Science and Mathmatics, 93(3), 136–140.