Đánh giá và dự đoán các tương tác protein bằng cách kết hợp nhúng đa dạng với tích hợp thông tin đa dạng
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chua HN, Wong L: Increasing the reliability of protein interactomes. Drug Discov Today 2008, 13: 652–658. 10.1016/j.drudis.2008.05.004
Edwards AM, Kus B, Jansen R, Greenbaum D, Greenblatt J, Gerstein M: Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet 2002, 18(10):529–536. 10.1016/S0168-9525(02)02763-4
Saito R, Suzuki H, Hayashizaki Y: Interaction generality, a measurement to assess the reliability of a protein-protein interaction. Nucleic Acids Res 2002, 30(5):1163–1168. 10.1093/nar/30.5.1163
Saito R, Suzuki H, Hayashizaki Y: Construction of reliable protein-protein interaction networks with a new interaction generality measure. Bioinformatics 2003, 19(6):756–763. 10.1093/bioinformatics/btg070
Chen J, Hsu W, Lee ML, Ng S-K: Discovering reliable protein interactions from high-throughput experimental data using network topology. Artif Intell Med 2005, 35: 37–47. 10.1016/j.artmed.2005.02.004
Chen J, Hsu W, Lee ML, Ng S-K: Increasing confidence of protein interactomes using network topological metrics. Bioinformatics 2006, 22(16):1998–2004. 10.1093/bioinformatics/btl335
Brun C, Chevent F, Martin D, Wojcik J, Guenoche A, Jacq B: Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol 2003, 5(1):R6. 10.1186/gb-2003-5-1-r6
Chua HN, Sung WK, Wong L: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 2006, 22(13):1623–1630. 10.1093/bioinformatics/btl145
Bader JS, Chaudhuri A, Rothberg JM, Chant J: Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 2004, 22(1):78–85. 10.1038/nbt924
Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, et al.: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 2003, 302(5644):449–453. 10.1126/science.1087361
Jansen R, Greenbaum D, Gerstein M: Relating whole-genome expression data with protein-protein interactions. Genome Res 2002, 12(1):37–46. 10.1101/gr.205602
Qi Y, Klien-Seetharaman J, Bar-Joseph Z: Random forest similarity for protein-protein interaction prediction from multiple sources. Pac Symp Biocomput 2005, 10: 531–542.
Dohkan S, Koike A, Takagi T: Prediction of protein-protein interactions using support vector machines. Proc Fourth IEEE Symposium on Bioinformatics and Bioengineering 2004, 576–583.
Przulj N: Biological network comparison using graphlet degree distribution. Bioinformatics 2006, 23(2):e177-e183.
Przulj N, Higham D: Modelling protein-protein interaction networks via stickiness index. J R Soc Interface 2006, 3(10):711–716. 10.1098/rsif.2006.0147
Przulj N, Corneil DG, Jurisica I: Modeling interactome: scale-free or geometric? Bioinformatics 2004, 20(18):3508–3515. 10.1093/bioinformatics/bth436
Przulj N, Corneil DG, Jurisica I: Efficient estimation of graphlet frequency distributions in protein-protein interaction networks. Bioinformatics 2006, 22(8):974–980. 10.1093/bioinformatics/btl030
Higham DJ, Rasajski M, Przulj N: Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 2008, 24(8):1093–1099. 10.1093/bioinformatics/btn079
Kuchaiev O, Rasajski M, Higham DJ, Przulj N: Geometric de-noising of protein-protein interaction networks. PLoS Comput Biol 2009, 5(8):e1000454. 10.1371/journal.pcbi.1000454
Terradot L, Durnell N, Li M, Ory J, Labigne A, Legrain P, Colland F, Waksman G: Biochemical characterization of protein complexes from the helicobacter pylori protein interaction map: strategies for complex formation and evidence for novel interactions within type IV secretion systems. Mol Cell Proteomics 2004, 3: 809–819. 10.1074/mcp.M400048-MCP200
Tenenbaum J, de Silva V, Langford J: A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290: 2319–2323. 10.1126/science.290.5500.2319
Roweis S, Saul L: Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290: 2323–2326. 10.1126/science.290.5500.2323
Saul LK, Roweis ST: Think globally, fit locally: unsupervised learning of low dimensional manifold. J Machine Learning Research 2003, 4: 119–155.
Belkin M, Niyogi P: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 2003, 15(6):1373–1396. 10.1162/089976603321780317
Donoho D, Grimes C: Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci USA 2003, 100(10):5591–5596. 10.1073/pnas.1031596100
Weinberger K, Saul L: Unsupervised learning of image manifolds by semidefinite programming. Proc IEEE Intl Conf Computer Vision and Pattern Recognition 2004, 2: 988–995.
Brand M: Charting a manifold. Proc Advances in Neural Information Processing Systems 2003, 15: 961–968.
Zhang Z, Zha H: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J Scientific Computing 2005, 26(1):313–338.
Coifman RR, Lafon S: Diffusion maps. Appl Comput Harmon Anal 2006, 21: 5–30. 10.1016/j.acha.2006.04.006
Lafon S, Lee AB: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning and data set parameterization. IEEE Trans Pattern Anal Mach Intell 2006, 28(9):1393–1403.
Lin T, Zha H, Lee S: Riemannian manifold learning for nonlinear dimensionality reduction. Proc Ninth European Conf Computer Vision 2006, 44–55.
Lin T, Zha HB: Riemannian manifold learning. IEEE Trans Pattern Anal Mach Intell 2008, 30(5):796–809.
Xiang SM, Nie FP, Zhang CS: Nonlinear dimensionality reduction with local spline embedding. IEEE Trans Knowledge and Data Engineering 2009, 21(9):1285–1298.
Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D: DIP: the database of interacting proteins. Nucleic Acids Res 2000, 28(1):289–291. 10.1093/nar/28.1.289
Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, et al.: The BioGRID interaction database: 2008 update. Nucleic Acids Res 2008, 36: D637-D640.
Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 2006, 440(7084):637–643. 10.1038/nature04670
Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440(7084):631–636. 10.1038/nature04532
Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FCP, Weissman JS, Krogan NJ: Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. Mol Cell Proteomics 2007, 6: 439–450.
Tong AHY, Lesage G, Bader GD, Ding HM, Xu H, Xin XF, et al.: Global mapping of the yeast genetic interaction network. Science 2004, 303(5659):808–813. 10.1126/science.1091317
The Gene Ontology Consortium: Creating the gene ontology resource: design and implementation. Genome Res 2001, 11: 1425–1433. 10.1101/gr.180801
Colak R, Hormozdiari F, Moser F, Schonhuth A, Holman J, Ester M, Sahinalp SC: Dense graphlet statistics of protein interaction and random networks. Pac Symp Biocomput 2009, 178–189.
Wong LS, Liu GM: Protein interactome analysis for countering pathogen drug resistance. J Comput Sci Technol 2010, 25: 124–130. 10.1007/s11390-010-9310-8
Qi Y, Klien-Seetharaman J, Bar-Joseph Z: Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 2006, 63: 490–500. 10.1002/prot.20865
Qi Y, Klien-Seetharaman J, Bar-Joseph Z: A mixture of feature experts approach for protein-protein interaction prediction. BMC Bioinformatics 2007, 8: S6.
Bar-Joseph Z, Gerber G, Lee T, Rinaldi N, Yoo J, Robert F, Gordon B, Fraenkel E, Jaakkola T, Young R, Gifford D: Computational discovery of gene modules and regulatory networks. Nat Biotechnol 2003, 21(11):1337–1342. 10.1038/nbt890
The Saccharomyces Genome Deletion Project[http://www-sequence.stanford.edu/group/yeast_deletion_project] (2004 Nov version)
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 2004, 431(7004):99–104. 10.1038/nature02800
Deng M, Mehta S, Sun F, Chen T: Inferring domain-domain interactions from protein-protein interactions. Genome Res 2002, 12(10):1540–8. 10.1101/gr.153002
Dolinski K, Balakrishnan R, Christie KR, Costanzo MC: Saccharomyces genome database (SGD).2004. [http://www.yeastgenome.org]
Lin N, Wu B, Jansen R, Gerstein M, Zhao H: Information assessment on predicting protein-protein interactions. BMC Bioinformatics 2004, 5: 154. 10.1186/1471-2105-5-154
Scott MS, Barton GJ: Probabilistic prediction and ranking of human protein-protein interactions. BMC Bioinformatics 2007, 8: 239. 10.1186/1471-2105-8-239
Sartor MA, Leikauf GD, Medvedovic M: LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 2009, 25(2):211–217. 10.1093/bioinformatics/btn592
You ZH, Lei YK, Huang DS, Zhou XB: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 2010, 26: 2744–2751. 10.1093/bioinformatics/btq510
Gall G, Pallottino S: Shortest path algorithms. Annals of Operations Research 1988, 13: 1–79. 10.1007/BF02288320
Bernstein M, de Silva V, Langford JC, Tenenbaum JB: Graph approximations to geodesics on embedded manifolds. Stanford University, Department of Psychology; 2000.
Cox TF, Cox MAA: Multidimensional Scaling. London: Chapman & Hall; 1994.
de Silva V, Tenenbaum JB: Global versus local methods in nonlinear dimensionality reduction. Proc of NIPS 2003, 15: 705–712.
Garey MR, Johnson DS: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman; 1979.
Karp RM: Reducibility among combinatorial problems. In Complexity of Computer Computations. Edited by: Miller RE, Thatcher JW. Plenum Press; 1972:85–103.
de Silva V, Tenenbaum J: Sparse multidimensional scaling using landmark points. In Technical report. Stanford University; 2004.
Angelelli JB, Baudot A, Brun C, Guenoche A: Two local dissimilarity measures for weighted graphs with application to protein interaction networks. Adv Data Anal Classif 2008, 2: 3–16. 10.1007/s11634-008-0018-3
Wang B, Chen P, Huang DS, Li J-J, Lok T-M, Lyu MR: Predicting protein interaction sites from residue spatial sequence profile and evolution rate. FEBS Lett 2006, 580(2):380–384. 10.1016/j.febslet.2005.11.081
Wang B, Wong HS, Huang DS: Inferring protein-protein interaction sites from residue evolutionary conservation information. Protein Pept Lett 2006, 13(10):999–1005. 10.2174/092986606778777498