Assessing Subaquatic Mass Movement Hazards: an Integrated Observational and Hydrodynamic Modelling Approach

Love Råman Vinnå1, Damien Bouffard2, Alfred Wüest1, Stéphanie Girardclos3, Nathalie Dubois4
1Physics of Aquatic Systems Laboratory – Margaretha Kamprad Chair, Institute of Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2Eawag, Swiss Federal Institute of Aquatic Science and Technology, Surface Waters – Research and Management, Kastanienbaum, Switzerland
3Department of Earth Sciences, University of Geneva, Geneve, Switzerland
4Department of Earth Sciences, ETH Zürich, Zürich, Switzerland

Tóm tắt

AbstractHigh-resolution lake and reservoir bathymetric surveys can pinpoint locations that may experience underwater landslides (subaquatic sedimentary mass movements). These can pose a risk to underwater and shoreline infrastructure. This paper outlines an approach for using spatial variation in sedimentary patterns to identify areas susceptible to subaquatic mass movements in lakes and reservoirs. This study focusses on Lake Biel (Switzerland), which has experienced a protracted history of upstream alteration of river flow. Altered flow patterns increase risk of unstable sedimentary features and subaquatic mass movements. Data from sediment traps and cores, Acoustic Doppler Current Profilers and results from a 3D hydrodynamic model gave a consistent picture of spatial and temporal variation in weather-related sedimentation. Erosion caused by short-term rain events contributes the largest proportion of sediments to the lake. Strong rain events combine with typical wind patterns to drive lake circulation. The net effect results in preferential sedimentation onto a steeply sloping shelf prone to subaquatic slides. The integrated approach outlined here incorporates short- and long-term sediment dynamics to provide a systematic assessment of lake sedimentation and potential mass movement hazards. This research represents a first step in developing a risk-evaluation tool for aquatic hazard evaluation.

Từ khóa


Tài liệu tham khảo

Albrecht A (1999) Transport of radiocobalt discharged by the Müehleberg nuclear reactor in the aquatic systems of the Aare river and Lake Biel (Switzerland). Hydroecologie Appliquee 11(1):1–28. https://doi.org/10.1051/hydro:1999001

Albrecht A, Reiser R, Lück A, Stoll JA, Giger W (1998) Radiocesium dating of sediments from lakes and reservoirs of different hydrological regimes. Environ Sci Technol 32(13):1882–1887. https://doi.org/10.1021/es970946h

Albrecht A, Goudsmit G, Zeh M (1999) Importance of lacustrine physical factors for the distribution of anthropogenic 60Co in Lake Biel. Limnol Oceanogr 44:196–206. https://doi.org/10.4319/lo.1999.44.1.0196

Baracchini T, Wüest A, Bouffard D (2020) Meteolakes: an operational online three-dimensional forecasting platform for lake hydrodynamics. Water Res 172:115529. https://doi.org/10.1016/j.watres.2020.115529

Baran R (2017) Projektbericht: Bielersee – LiDAR-Daten und Digitales Geländemodell in Kombination mit Echolot-Daten, Alpine Airborne HydroMapping, Innsbruck, Österreich, 6 Februar 2017

Blass A, Anselmetti FS, Grosjean M, Sturm M (2005) The last 1300 years of environmental history recorded in the sediments of Lake Sils (Engadine, Switzerland). Eclogae Geol Helv 98(3):319–332. https://doi.org/10.1007/s00015-005-1166-5

Carter L, Milliman JD, Talling PJ, Gavey R, Wynn RB (2012) Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan. Geophys Res Lett 39(12). https://doi.org/10.1029/2012GL051172

Coulter HW, Migliaccio RR (1966) Effects of the earthquake of March 27, 1964, at Valdez, Alaska: Chapter C in The Alaska earthquake, March 27, 1964: effects on communities. U.S. Government Printing Office, pp 1–36. https://doi.org/10.3133/pp542C

Dubois N, Råman Vinnå L, Rabold M, Hilbe M, Anselmetti FS, Wüest A et al (2020) Subaquatic slope instabilities: the aftermath of river correction and artificial dumps in Lake Biel (Switzerland). Sedimentology 67(2):971–990. https://doi.org/10.1111/sed.12669

Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215(1–2):45–57. https://doi.org/10.1016/j.margeo.2004.11.007

Finger D, Schmid M, Wüest A (2006) Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes. Water Resour Res 42(8):W08429. https://doi.org/10.1029/2005WR004751

Forel FA (1892) Le Léman (vol 1). Ed. Rouge, Lausanne (Switzerland), 539 pp

Harbitz CB, Løvholt F, Bungum H (2014) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72(3):1341–1374. https://doi.org/10.1007/s11069-013-0681-3

Hofmann A, Filella M (1999) Transport of suspended matter in the hypolimnion of Lake Lugano: a comparison of field observations and model predictions. J Great Lakes Res 25(4):865–882. https://doi.org/10.1016/S0380-1330(99)70784-7

Hug C, Kaufmann P, Ruffieux D (2010) Verification of COSMO-2 with independent data from a wind profiler. COSMO Newsletter No 10(6):64–69

Jeannet A, Corella JP, Reusch A, Kremer K, Girardclos S (2013) Lake Biel sediment record during the last 7500 years and impact of the Aare river deviation in 1878 AD, vol 15, pp 4027. Presented at the EGU general assembly 2013

Kelts K, Hsü KJ (1980) Resedimented facies of 1875 Horgen slumps in Lake Zurich and a process model of longitudinal transport of turbidity currents. Eclogae Geol Helv 73(1):271–281. https://doi.org/10.5169/SEALS-164954

Kopf AJ, Kasten S, Blees J (2010) Geochemical evidence for groundwater-charging of slope sediments: the Nice Airport 1979 landslide and tsunami revisited. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Springer Netherlands, Dordrecht, pp 203–214. https://doi.org/10.1007/978-90-481-3071-9_17

Kremer K, Simpson G, Girardclos S (2012) Giant Lake Geneva tsunami in AD 563. Nat Geosci 5(11):756–757. https://doi.org/10.1038/ngeo1618

Kremer K, Marillier F, Hilbe M, Simpson G, Dupuy D, Yrro BJF et al (2014) Lake dwellers occupation gap in Lake Geneva (France–Switzerland) possibly explained by an earthquake–mass movement–tsunami event during early bronze age. Earth Planet Sci Lett 385:28–39. https://doi.org/10.1016/j.epsl.2013.09.017

Lambert A, Giovanoli F (1988) Records of riverborne turbidity currents and indications of slope failures in the Rhone delta of Lake Geneva. Limnol Oceanogr 33(3):458–468. https://doi.org/10.4319/lo.1988.33.3.0458

Lee HJ, Locat J, Desgagnes P, Parsons J, McAddoo B (2007) In: Nittrouer CA, Austin JA, Field ME, Kravitz JH, Syvitski JPM, Wiberg PL (eds) Submarine mass movements on continental margins, in continental margin sedimentation: from sediment transport to sequence stratigraphy. Blackwell Publishing Ltd., Oxford

Liechti P (1994) L’état des lacs en Suisse. Cahier de l’Environnement, 237, Office Federal de l’Environnement, des Forêts et du Paysage (OFEFP), Berne, Suisse, pp 159

Matter A, Sturm M (1982) Sedimentologische Untersuchungen in den grossen Berner seen: Brienzer-, Thuner- und Bielersee. Mitteilungen der Naturforschenden Gesellschaft in Bern. Neue Folge 39:59–73. https://doi.org/10.5169/seals-318473

Nast M (2006) Terre du lac, l’histoire de la correction des eaux du Jura. Verein Schlossmuseum Nidau

Nydegger P (1976) Strömungen in seen: Untersuchungen in situ und an nachgebildeten Modellseen. Beitr Geol Schweiz 66:141–177

Perga M, Bruel R, Rodriguez L, Guénand Y, Bouffard D (2018) Storm impacts on alpine lakes: antecedent weather conditions matter more than the event intensity. Glob Chang Biol 24(10):5004–5016. https://doi.org/10.1111/gcb.14384

Piper DJW, Aksu AE (1987) The source and origin of the 1929 grand banks turbidity current inferred from sediment budgets. Geo-Mar Lett 7(4):177–182. https://doi.org/10.1007/BF02242769

Råman Vinnå L, Wüest A, Bouffard D (2017a) Physical effects of thermal pollution in lakes. Water Resour Res 53(5):3968–3987. https://doi.org/10.1002/2016WR019686

Råman Vinnå L, Bouffard D, Dubois N, Hilbe M, Käser R, Wüest A (2017b) Seewasserentnahme im Bielersee - Gibt es eine ideale position? Aqua & Gas - Fachzeitschrift Für Gas, Wasser Und Abwasser 97(9):14–20

Råman Vinnå L, Wüest A, Zappa M, Fink G, Bouffard D (2018) Tributaries affect the thermal response of lakes to climate change. Hydrol Earth Syst Sci 22:31–51. https://doi.org/10.5194/hess-22-31-2018

Righetti M, Toffolon M, Lucarelli C, Serafini M (2011) Sediments as tracers for transport and deposition processes in peri-alpine lakes: a case study. J Hydrol 411(1–2):1–11. https://doi.org/10.1016/j.jhydrol.2011.08.018

Roth H, Geiger W (1972) Brienzersee, Thunersee, and Bielersee: effects of exploitation and eutrophication on the salmonid communities. J Fish Res 29(6):755–764

Santschi PW, Schindler PW (1977) Chemical and geochemical studies of Lake Biel I. A mass balance for Lake Biel and its implications for the rates of erosion of the drainage area. Aquat Sci 39(2):182–200. https://doi.org/10.1007/BF02502668

Sassa K, Canuti P, International Consortium on Landslides (eds) (2009) Landslides: disaster risk reduction. Presented at the United Nations world conference on disaster reduction. Springer, Berlin

Schimmelpfennig S, Kirillin G, Engelhardt C, Nützmann G (2012) Effects of wind-driven circulation on river intrusion in Lake Tegel: modeling study with projection on transport of pollutants. Environ Fluid Mech 12(4):321–339. https://doi.org/10.1007/s10652-012-9236-5

Steinsberger T, Schmid M, Wüest A, Schwefel R, Wehrli B, Müller B (2017) Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes. Biogeosciences 14(13):3275–3285. https://doi.org/10.5194/bg-14-3275-2017

Strasser M, Stegmann S, Bussmann F, Anselmetti FS, Rick B, Kopf A (2007) Quantifying subaqueous slope stability during seismic shaking: Lake Lucerne as model for ocean margins. Mar Geol 240(1–4):77–97. https://doi.org/10.1016/j.margeo.2007.02.016

Strasser M, Hilbe M, Anselmetti FS (2011) Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards. Mar Geophys Res 32(1–2):331–347. https://doi.org/10.1007/s11001-010-9100-2

Strupler M, Anselmetti FS, Hilbe M, Kremer K, Wiemer S (2019) A workflow for the rapid assessment of the landslide-tsunami hazard in peri-alpine lakes. Geol Soc Lond Spec Publ:SP500-2019–166. https://doi.org/10.1144/SP500-2019-166

SVGW (2016) dataset: “Statistische Erhebungen der Wasserversorgungen in der Schweiz, Betriebsjahr 2015”

Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308(5720):376–380. https://doi.org/10.1126/science.1109454

Tananaev NI (2012) Hysteresis effect in the seasonal variations in the relationship between water discharge and suspended load in rivers of permafrost zone in Siberia and Far East. Water Res 39(6):648–656. https://doi.org/10.1134/S0097807812060073

Thevenon F, Wirth SB, Fujak M, Poté J, Girardclos S (2013) Human impact on the transport of terrigenous and anthropogenic elements to peri-alpine lakes (Switzerland) over the last decades. Aquat Sci 75(3):413–424. https://doi.org/10.1007/s00027-013-0287-6

Vischer DL (2003) Die Geschichte des Hochwasserschutzes in der Schweiz. Berichte des BWG, Serie Wasser, Nr. 5, 61–70, Bern

Weiss HP (1979) Die Oberflächensedimente des Bielersees. Eclogae Geol Helv 72(2):407–424. https://doi.org/10.5169/seals-164844

Weusthoff T, Ament F, Arpagaus M, Rotach MW (2010) Assessing the benefits of convection-permitting models by neighborhood verification: examples from MAP D-PHASE. Mon Weather Rev 138(9):3418–3433. https://doi.org/10.1175/2010MWR3380.1

Wirth SB, Girardclos S, Rellstab C, Anselmetti FS (2011) The sedimentary response to a pioneer geo-engineering project: tracking the Kander River deviation in the sediments of Lake Thun (Switzerland). Sedimentology 58(7):1737–1761. https://doi.org/10.1111/j.1365-3091.2011.01237.x

Wright RF, Nydegger P (1980) Sedimentation of detrital particulate matter in lakes: influence of currents produced by inflowing rivers. Water Resour Res 16(3):597–601. https://doi.org/10.1029/WR016i003p00597

Wright RF, Matter A, Schweingruber M, Siegenthaler U (1980) Sedimentation in Lake Biel, an eutrophic, hard-water lake in northwestern Switzerland. Schweiz Z Hydrol 42(2):101–126