Assessing Potentiality of Support Vector Machine Method in Crude Oil Price Forecasting
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramson, B., & Finizza, A. (1995). Probabilistic forecasts from probabilistic models: a case study in the oil market. International Journal of Forecasting, 11(1), 63-72.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121-167.
Cao, L. J., & Tay, F. E. H. (2001). Financial forecasting using support vector machines. Neural Computing Applications, 10, 184-192.
Cristianini, N., & Taylor, J. S. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, New York.
Chou, J. R. (2016). An Empirical Study of User Experience on Touch Mice. Eurasia Journal of Mathematics, Science & Technology Education, 12(11), 2875-2885.
Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13, 253-263.
Doornik, J. A., & Ooms, M. (2001). A package for estimating, forecasting and simulating ARFIMA models: ARFIMA Package 1.1 for Ox. Working paper, Nuffield College, Oxford.
Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1, 15-29.
Gulen, S. G. (1998). Efficiency in the crude oil futures market. Journal of Energy Finance & Development, 3, 13-21.
Huntington, H. G. (1994). Oil price forecasting in the 1980s: what went wrong? The Energy Journal, 15(2), 1-22.
Kaboudan, M. A. (2001). Compumetric forecasting of crude oil prices. The Proceedings of IEEE Congress on Evolutionary Computation, 283-287.
Krolzig, H. M. (1998). Econometric modelling of markov-switching vector autoregressions using MSVAR for Ox, Working Paper, Nuffield College, Oxford.
Lanza, A., Manera, M., & Giovannini, M. (2005). Modeling and forecasting cointegrated relationships among heavy oil and product prices. Energy Economics, 27, 831-848.
Lee, D. K., & Lee, E. S. (2016). Analyzing team based engineering design process in computer supported collaborative learning. Eurasia Journal of Mathematics, Science & Technology Education, 12(4), 767-782.
Mirmirani, S., & Li, H. C. (2004). A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil. Advances in Econometrics, 19, 203-223.
Morana, C. (2001). A semiparametric approach to short-term oil price forecasting. Energy Economics, 23(3), 325-338.
Muller, K. R., Smola, J. A., & Scholkopf, B. (1997). Prediction time series with support vector machines. Proceedings of International Conference on Artificial Neural Networks, Lausanne, 999-1004.
Panas, E., & Ninni, V. (2000). Are oil markets chaotic? A non-linear dynamic analysis. Energy Economics, 22, 549-568.
Pelckmans, K., Suykens, J. A. K., Van Gestel, T., De Brabanter, J., Lukas, L., Hamers, B., De Moor, B., & Vandewalle, J. (2003). LS-SVMlab Toolbox User’s Guide (version 1.5), ESAT-SCD-SISTA Technical Report 02-145, Katholieke Universiteit Leuven.
Schmidt, C. M., & Tschernig, R. (1995). The identification of fractional ARIMA models. Sonderforschungsbereich, 373, Humboldt Universitaet Berlin.
Shambora, W. E., & Rossiter, R. (2007). Are there exploitable inefficiencies in the futures market for oil? Energy Economics, 29, 18-27.
Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of Econometrics, 53, 165-188.
Tay, F. E. H., & Cao, L. J. (2001a). Applications of support vector machines in financial time series forecasting. Omega, 29, 309-317.
Tay, F. E. H., & Cao, L. J. (2001b). Improved financial time series forecasting by combining support vector machines with self-organizing feature map. Intelligent Data Analysis, 5, 339-354.
Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. Neurocomputing, 48, 847-861.
Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988-999.
Vapnik, V. N., Golowich, S. E., & Smola, A. J. (1996). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 9, 281-287.
Wang, S. Y., Yu, L., & Lai, K. K. (2004). A novel hybrid AI system framework for crude oil price forecasting. Lecture Notes in Computer Science, 3327, 233-242.
Wang, S. Y., Yu, L., & Lai, K. K. (2005). Crude oil price forecasting with TEI@I methodology. Journal of Systems Sciences and Complexity, 18(2), 145-166.
Watkins, G. C., & Plourde, A. (1994). How volatile are crude oil prices? OPEC Review, 18(4), 220-245.
Weigend, A. S., & Gershenfeld, N. A. (1994). Time Series Prediction: Forecasting the Future and Understanding the Past. Addison-Wesley, Reading, MA.
White, H. (1990). Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings. Neural Networks, 3, 535-549.
Ye, M., Zyren, J., & Shore, J. (2002). Forecasting crude oil spot price using OECD petroleum inventory levels. International Advances in Economic Research, 8, 324-334.
Ye, M., Zyren, J., & Shore, J. (2005). A monthly crude oil spot price forecasting model using relative inventories. International Journal of Forecasting, 21, 491-501.
Ye, M., Zyren, J., & Shore, J. (2006). Forecasting short-run crude oil price using high and low-inventory variables. Energy Policy, 34, 2736-2743.
Yu, L., Lai, K. K., Wang, S. Y., & He, K. J. (2007a). Oil price forecasting with an EMD-based multiscale neural network learning paradigm. Lecture Notes in Computer Science, 4489, 925-932.
Yu, L., Wang, S. Y., & Lai, K. K. (2007b). Foreign-Exchange-Rate Forecasting with Artificial Neural Networks. Springer, New York.
Yu, L., Wang, S. Y., & Lai, K. K. (2008). Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Economics, 30(5), 2623-2635.