Assembly of Bacteriophage into Functional Materials

Chemical Record - Tập 13 Số 1 - Trang 43-59 - 2013
Sung Ho Yang1,2, Woo‐Jae Chung1,2, Sean McFarland1,2, Seung‐Wuk Lee1,2
1Department of Bioengineering, University of California, Berkeley, California 94720, USA
2Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Tóm tắt

ABSTRACT:For the last decade, the fabrication of ordered structures of phage has been of great interest as a means of utilizing the outstanding biochemical properties of phage in developing useful materials. Combined with other organic/inorganic substances, it has been demonstrated that phage is a superior building block for fabricating various functional devices, such as the electrode in lithium‐ion batteries, photovoltaic cells, sensors, and cell‐culture supports. Although previous research has expanded the utility of phage when combined with genetic engineering, most improvements in device functionality have relied upon increases in efficiency owing to the compact, more densely packable unit size of phage rather than on the unique properties of the ordered nanostructures themselves. Recently, self‐templating methods, which control both thermodynamic and kinetic factors during the deposition process, have opened up new routes to exploiting the ordered structural properties of hierarchically organized phage architectures. In addition, ordered phage films have exhibited unexpected functional properties, such as structural color and optical filtering. Structural colors or optical filtering from phage films can be used for optical phage‐based sensors, which combine the structural properties of phage with target‐specific binding motifs on the phage‐coat proteins. This self‐templating method may contribute not only to practical applications, but also provide insight into the fundamental study of biomacromolecule assembly in in vivo systems under complicated and dynamic conditions.

Từ khóa


Tài liệu tham khảo

10.1126/science.1962191

10.1126/science.1070821

10.1126/science.1154586

10.1038/nbt874

10.1063/1.3477194

10.1103/PhysRevB.78.195419

10.1063/1.2434173

10.1002/adma.201003991

10.1021/nn2007964

10.1002/cphc.200500007

10.1038/nature01937

10.1126/science.274.5289.959

10.1126/science.1112255

10.1038/424899a

10.1126/science.1070026

10.1038/ncomms1172

10.1021/cr8004422

10.1038/35015043

10.1126/science.1092740

10.1073/pnas.0832310100

10.1021/nl050795d

10.1021/ja061726j

10.1002/anie.200902727

10.1038/nnano.2010.57

10.1126/science.1122716

10.1126/science.1171541

10.1002/anie.200900231

10.1039/b811039e

10.1126/science.111.2889.507

10.1007/s00249-007-0222-7

10.1038/345036a0

10.1038/nsb970

10.1016/j.jmb.2005.10.048

Rodi D. J., 2005, Phage Display in Biotechnology and Drug Discovery

10.1021/nl8036728

10.1016/0378-1119(88)90495-7

10.1126/science.1696028

10.1021/ja045673m

10.1073/pnas.0809543105

10.1039/b717826c

10.1021/ja031790q

10.1007/s12274-009-9033-8

10.1007/s12274-008-8027-2

10.1021/bc900405q

10.1016/j.cbpa.2010.11.006

10.1038/nchembio.720

10.1021/ar2001292

10.1021/cr960065d

10.1126/science.4001944

10.1063/1.337167

10.1002/adfm.200304275

10.1016/j.cocis.2005.10.004

10.1002/adma.200304818

10.1021/la026387w

10.1038/30700

10.1021/la000446t

10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S

10.1103/PhysRevLett.78.2417

10.1126/science.1068054

10.1016/0378-1119(90)90336-P

10.1021/bc070006e

10.1021/ja0765363

10.1021/nl070512c

10.1093/protein/9.9.797

10.1021/bm801224q

10.1006/jmbi.1999.3192

10.1126/science.2143033

10.1016/0378-1119(95)00889-6

10.1038/nm1101-1249

10.1038/380364a0

Cao B., 2011, Phage Nanobiotechnology; Filamentous Phage‐templated Synthesis and Assembly of Inorganic Nanomaterials

Brissette R., 2007, Methods in Molecular Biology

10.1016/j.actamat.2003.08.031

10.1021/nl102564d

10.1021/ja2042832

10.1016/j.copbio.2005.07.001

10.1016/j.cbpa.2006.04.008

10.1038/nmat964

Chung W. J., 2011, Comprehensive Biomaterials; Phage as developmental tools for functional nanomaterials

10.1021/nl034911t

10.1002/adma.200602262

10.1038/nmat1596

10.1021/nl073079f

Daniel J. S., 2009, Adv. Mater., 22, 111

10.1073/pnas.0711620105

10.1021/nl050795d

10.1021/bm050691x

10.1021/cm902727s

10.1002/smll.201001108

10.1002/adma.200800777

10.1038/nmat2441

Dhont J. K. G., 2004, Rod‐like Brownian Particles in Shear Flow

10.1021/nl8036728

10.1021/bm1013475

10.1002/smll.200600399

10.1021/la100226u

10.1039/c0sm00199f

10.1039/b811039e

10.1021/bc900303f

10.1039/c0sm00879f

10.1038/nature10513

10.1242/jeb.00989

10.1242/jeb.00431

10.1126/science.1172051

10.1038/nnano.2012.69

10.1016/j.exer.2010.06.021

10.1038/nature10769