Assembly and Purification of Polyomavirus-Like Particles from Plants
Tóm tắt
Polyomaviruses are small DNA viruses that have a history of use in biotechnology. The capsids of a number of species have been developed into experimental prophylactic and therapeutic virus-like particle (VLP) vaccines. In order to explore plants as a host for the expression and purification of polyomavirus-like particles, we have transiently expressed the major capsid protein, VP1, in Nicotiana benthamiana leaves. Deletion of a polybasic motif from the N-terminal region of VP1 resulted in increased expression as well as reduced necrosis of leaf tissue, which was associated with differences in subcellular localisation and reduced DNA binding by the deletion variant (ΔVP1). Self-assembled VLPs were recovered from tissue expressing both wild-type VP1 and ΔVP1 by density gradient ultracentrifugation. VLPs composed of ΔVP1 were more homogenous than wtVPLs and, unlike the latter, did not encapsidate nucleic acid. Such homogenous, empty VLPs are of great interest in biotechnology and nanotechnology. In addition, we show that both MPyV VLP variants assembled in plants can be produced with encapsidated foreign protein. Thus, this study demonstrates the utility of plant-based expression of polyomavirus-like particles and the suitability of this host for further developments in polyomavirus-based technologies.
Tài liệu tham khảo
Abbing, A., Blaschke, U. K., Grein, S., Kretschmar, M., Stark, C. M., Thies, M. J., et al. (2004). Efficient intracellular delivery of a protein and a low molecular weight substance via recombinant polyomavirus-like particles. The Journal of Biological Chemistry, 279, 27410–27421.
Aljabali, A. A., Sainsbury, F., Lomonossoff, G. P., & Evans, D. J. (2010). Cowpea mosaic virus unmodified empty viruslike particles loaded with metal and metal oxide. Small (Weinheim an der Bergstrasse, Germany), 6, 818–821.
Anggraeni, M. R., Connors, N. K., Wu, Y., Chuan, Y. P., Lua, L. H. L., & Middelberg, A. P. J. (2013). Sensitivity of immune response quality to influenza helix 190 antigen structure displayed on a modular virus-like particle. Vaccine, 31, 4428–4435.
Barouch, D. H., & Harrison, S. C. (1994). Interactions among the major and minor coat proteins of polyomavirus. Journal of Virology, 68, 3982–3989.
Benchabane, M., Goulet, C., Rivard, D., Faye, L., Gomord, V., & Michaud, D. (2008). Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnology Journal, 6, 633–648.
Boura, E., Liebl, D., Spisek, R., Fric, J., Marek, M., Stokrova, J., et al. (2005). Polyomavirus EGFP-pseudocapsids: Analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Letters, 579, 6549–6558.
Chang, D., Cai, X., & Consigli, R. A. (1993). Characterization of the DNA binding properties of polyomavirus capsid protein. Journal of Virology, 67, 6327–6331.
Chen, Q., & Lai, H. (2013). Plant-derived virus-like particles as vaccines. Human Vaccines and Immunotherapy, 9, 26–49.
Chen, X. S., Stehle, T., & Harrison, S. C. (1998). Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. The EMBO Journal, 17, 3233–3240.
Chuan, Y. P., Fan, Y. Y., Lua, L., & Middelberg, A. P. J. (2008). Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnology and Bioengineering, 99, 1425–1433.
Connors, N. K., Wu, Y., Lua, L. H. L., & Middelberg, A. P. J. (2014). Improved fusion tag cleavage strategies in the downstream processing of self-assembling virus-like particle vaccines. Food and Bioproducts Processing, 92, 143–151.
DeCaprio, J. A., & Garcea, R. L. (2013). A cornucopia of human polyomaviruses. Nature Reviews Microbiology, 11, 264–276.
Friedmann, T. (1976). Structural proteins of polyoma virus: Proteolytic degradation of virion proteins by exogenous and by virion-associated proteases. Journal of Virology, 20, 520–526.
Friedmann, T., & Haas, M. (1970). Rapid concentration and purification of polyoma virus and SV40 with polyethylene glycol. Virology, 42, 248–250.
Gillock, E., & Consigli, R. (1998). Truncation of the nuclear localization signal of polyomavirus VP1 results in a loss of DNA packaging when expressed in the baculovirus system. Virus Research, 58, 149–160.
Goulet, C., Khalf, M., Sainsbury, F., D’Aoust, M. A., & Michaud, D. (2012). A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnology Journal, 10, 83–94.
Grebenok, R. J., Pierson, E., Lambert, G. M., Gong, F. C., Afonso, C. L., Haldeman-Cahill, R., et al. (1997). Green-fluorescent protein fusions for efficient characterization of nuclear targeting. The Plant Journal, 11, 573–586.
Leavitt, A. D., Roberts, T. M., & Garcea, R. L. (1985). Polyoma virus major capsid protein, VP1. Purification after high level expression in Escherichia coli. The Journal of Biological Chemistry, 260, 12803–12809.
Lipin, D. I., Chuan, Y. P., Lua, L. H. L., & Middelberg, A. P. J. (2008). Encapsulation of DNA and non-viral protein changes the structure of murine polyomavirus virus-like particles. Archives of Virology, 153, 2027–2039.
Lua, L. H. L., Connors, N. K., Sainsbury, F., Chuan, Y. P., Wibowo, N., & Middelberg, A. P. J. (2014). Bioengineering virus-like particles as vaccines. Biotechnology and Bioengineering, 111, 425–440.
Maclean, J., Koekemoer, M., Olivier, A. J., Stewart, D., Hitzeroth, I. I., Rademacher, T., et al. (2007). Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: Comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. Journal of General Virology, 88, 1460–1469.
Mandal, M. K., Fischer, R., Schillberg, S., & Schiermeyer, A. (2014). Inhibition of protease activity by antisense RNA improves recombinant protein production in Nicotiana tabacum cv. Bright yellow 2 (BY-2) suspension cells. Biotechnology Journal, 9, 1065–1073.
Matic, S., Masenga, V., Poli, A., Rinaldi, R., Milne, R. G., Vecchiati, M., & Noris, E. (2012). Comparative analysis of recombinant human papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnology Journal, 10, 410–421.
Merkle, T. (2003). Nucleo-cytoplasmic partitioning of proteins in plants: Implications for the regulation of environmental and developmental signalling. Current Genetics, 44, 231–260.
Middelberg, A. P., Rivera-Hernandez, T., Wibowo, N., Lua, L. H., Fan, Y., Magor, G., et al. (2011). A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 29, 7154–7162.
Moreland, R., Montross, L., & Garcea, R. (1991). Characterization of the DNA-binding properties of the polyomavirus capsid protein VP1. Journal of Virology, 65, 1168–1176.
Moreland, R. B., & Garcea, R. L. (1991). Characterization of a nuclear localization sequence in the polyomavirus capsid protein VP1. Virology, 185, 513–518.
Nilsson, J., Miyazaki, N., Xing, L., Wu, B., Hammar, L., Li, T. C., et al. (2005). Structure and assembly of a T = 1 virus-like particle in BK polyomavirus. Journal of Virology, 79, 5337–5345.
Pastrana, D. V., Brennan, D. C., Cuburu, N., Storch, G. A., Viscidi, R. P., Randhawa, P. S., & Buck, C. B. (2012). Neutralization serotyping of BK polyomavirus infection in kidney transplant recipients. PLoS Pathogens, 8, e1002650.
Paul, M., & Ma, J. K. (2011). Plant-made pharmaceuticals: Leading products and production platforms. Biotechnology and Applied Biochemistry, 58, 58–67.
Rayment, I., Baker, T. S., Caspar, D. L., & Murakami, W. T. (1982). Polyoma virus capsid structure at 22.5 A resolution. Nature, 295, 110–115.
Rivera-Hernandez, T., Hartas, J., Wu, Y., Chuan, Y. P., Lua, L. H., Good, M., et al. (2013). Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccines, 31, 1950–1955.
Robert, S., Khalf, M., Goulet, M. C., D’Aoust, M. A., Sainsbury, F., & Michaud, D. (2013). Protection of recombinant mammalian antibodies from development-dependent proteolysis in leaves of Nicotiana benthamiana. PLoS One, 8, e70203.
Sainsbury, F., & Lomonossoff, G. P. (2008). Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiology, 148, 1212–1218.
Sainsbury, F., & Lomonossoff, G. P. (2014). Transient expressions of synthetic biology in plants. Current Opinion in Plant Biology, 19, 1–7.
Sainsbury, F., Thuenemann, E. C., & Lomonossoff, G. P. (2009). pEAQ: Versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnology Journal, 7, 682–693.
Salunke, D. M., Caspar, D. L., & Garcea, R. L. (1986). Self-assembly of purified polyomavirus capsid protein VP1. Cell, 46, 895–904.
Salunke, D. M., Caspar, D. L., & Garcea, R. L. (1989). Polymorphism in the assembly of polyomavirus capsid protein VP1. Biophysical Journal, 56, 887–900.
Sasnauskas, K., Bulavaite, A., Hale, A., Jin, L., Knowles, W. A., Gedvilaite, A., et al. (2002). Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae. Intervirology, 45, 308–317.
Sasnauskas, K., Buzaite, O., Vogel, F., Jandrig, B., Razanskas, R., Staniulis, J., et al. (1999). Yeast cells allow high-level expression and formation of polyomavirus-like particles. Biological Chemistry, 380, 381–386.
Schumacher, T., Ruehland, C., Schultheiss, C., Brinkman, M., Roedel, F., Reiser, C. O., et al. (2007). Advanced antigen delivery of murine survivin: Chimeric virus-like particles in cancer vaccine research. International Journal of Biomedical Science: IJBS, 3, 199–205.
Scotti, N., & Rybicki, E. (2013). Virus-like particles produced in plants as potential vaccines. Expert Reviews Vaccines, 12, 211–224.
Simon, C., Klose, T., Herbst, S., Han, B. G., Sinz, A., Glaeser, R. M., et al. (2014). Disulfide linkage and structure of highly stable yeast-derived virus-like particles of murine polyomavirus. The Journal of Biological Chemistry, 289, 10411–10418.
Stehle, T., & Harrison, S. (1996). Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure, 4, 183–194.
Tegerstedt, K., Lindencrona, J., Curcio, C., Andreasson, K., Tullus, C., Forni, G., et al. (2005). A single vaccination with polyomavirus VP1/VP2Her2 virus-like particles prevents outgrowth of Her-2/neu-expressing tumors. Cancer Research, 65, 5953–5957.
Teunissen, E. A., de Raad, M., & Mastrobattista, E. (2013). Production and biomedical applications of virus-like particles derived from polyomaviruses. Journal of Controlled Release, 172, 305–321.
Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33, 949–956.
Wen, A. M., Shukla, S., Saxena, P., Aljabali, A. A., Yildiz, I., Dey, S., et al. (2012). Interior engineering of a viral nanoparticle and its tumor homing properties. Biomacromolecules, 13, 3990–4001.
White, M. K., Gordon, J., & Khalili, K. (2013). The rapidly expanding family of human polyomaviruses: Recent developments in understanding their life cycle and role in human pathology. PLoS Pathogens, 9, e1003206.
Wu, W., Hsiao, S. C., Carrico, Z. M., & Francis, M. B. (2009). Genome-free viral capsids as multivalent carriers for taxol delivery. Angewandte Chemie, 48, 9493–9497.