Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Aspergillus nidulans trong kỷ nguyên sau giải trình tự gen: một loài nấm sợi mô hình hàng đầu cho nghiên cứu cơ chế tín hiệu và cân bằng nội môi
Tóm tắt
Việc tiếp cận các kỹ thuật giải trình tự thế hệ tiếp theo (NGS) đã cho phép giải trình tự hàng trăm bộ gen của các loài đại diện cho tất cả các vương quốc. Đối với nấm, bộ gen của hơn một nghìn loài đã có sẵn công khai. Điều này vẫn còn khá xa so với con số 2,2-3,8 triệu loài nấm được ước tính đang sinh sống trên thế giới nhưng đã cải thiện đáng kể độ phân giải của cây sự sống của nấm. Hơn nữa, nó đã thúc đẩy các phân tích tiến hóa hệ thống, phát triển các phân tích chẩn đoán nhanh hơn và chính xác hơn cho các chủng bệnh hoặc cải thiện một số quy trình công nghệ sinh học. Tuy nhiên, sự đa dạng của các loài nấm được sử dụng làm mô hình cũng đã làm suy yếu nghiên cứu về các loài khác vốn được sử dụng làm tham chiếu trong kỷ nguyên tiền gen. Trong bối cảnh này, và sau hơn 65 năm kể từ những công trình đầu tiên được công bố bởi Pontecorvo, Aspergillus nidulans vẫn là một trong những loài nấm sợi mô hình tham chiếu hàng đầu trong các lĩnh vực nghiên cứu như hình thái học hypha, vận chuyển nội bào, chương trình phát triển, chuyển hóa thứ cấp, hay phản ứng đối phó với stress. Bài tổng quan ngắn này tóm tắt cách A. nidulans đã đóng góp vào sự tiến bộ trong những lĩnh vực này trong những năm qua, và thảo luận về cách mà nó có thể đóng góp trong tương lai, được hỗ trợ bởi NGS và các công cụ phân tử, kính hiển vi hoặc tế bào thế hệ mới.
Từ khóa
#Aspergillus nidulans; nấm sợi; công nghệ giải trình tự thế hệ tiếp theo; cơ chế tín hiệu; cân bằng nội môiTài liệu tham khảo
Abenza JF, Pantazopoulou A, Rodríguez JM, Galindo A, Peñalva MA (2009) Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 10:57–75. https://doi.org/10.1111/j.1600-0854.2008.00848.x
Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353–362. https://doi.org/10.1016/0092-8674(88)90198-5
Adams TH, Wieser JK, Yu J-H (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54
Al Abdallah Q, Souza ACO, Martin-Vicente A et al (2018) Whole-genome sequencing reveals highly specific gene targeting by in vitro assembled Cas9-ribonucleoprotein complexes in Aspergillus fumigatus. Fungal Biol Biotechnol 5:11. https://doi.org/10.1186/s40694-018-0057-2
Alkhayyat F, Ni M, Kim SC, Yu J-H (2015) The WOPR domain protein OsaA orchestrates development in Aspergillus nidulans. PLoS One 10:e0137554
Alshannaq A, Yu J-H (2017) Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 14:632. https://doi.org/10.3390/ijerph14060632
Andrianopoulos A, Timberlake WE (1994) The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14:2503–2515. https://doi.org/10.1128/MCB.14.4.2503
Araujo-Bazán L, Peñalva MA, Espeso EA (2008) Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 67:891–905. https://doi.org/10.1111/j.1365-2958.2007.06102.x
Arst HN, Peñalva MA (2003a) pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 19:224–231. https://doi.org/10.1016/S0168-9525(03)00052-0
Arst HN, Peñalva MA (2003b) Recognizing gene regulation by ambient pH. Fungal Genet Biol 40:1–3. https://doi.org/10.1016/S1087-1845(03)00077-X
Bartnicki-Garcia S, Hergert F, Gierz G (1989) Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma 153:46–57. https://doi.org/10.1007/BF01322464
Bat-Ochir C, Kwak J-Y, Koh S-K, Jeon MH, Chung D, Lee YW, Chae SK (2016) The signal peptide peptidase SppA is involved in sterol regulatory element-binding protein cleavage and hypoxia adaptation in Aspergillus nidulans. Mol Microbiol 100:635–655. https://doi.org/10.1111/mmi.13341
Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24
Bayram Ö, Krappmann S, Ni M et al (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320(80):1504 LP–1501506
Brakhage AA, Thön M, Spröte P, Scharf DH, al-Abdallah Q, Wolke SM, Hortschansky P (2009) Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 70:1801–1811. https://doi.org/10.1016/j.phytochem.2009.09.011
Braus GH, Irniger S, Bayram Ö (2010) Fungal development and the COP9 signalosome. Curr Opin Microbiol 13:672–676. https://doi.org/10.1016/j.mib.2010.09.011
Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci 93:1418–1422. https://doi.org/10.1073/pnas.93.4.1418
Bruggeman J, Debets AJM, Wijngaarden PJ et al (2003) Sex slows down the accumulation of deleterious mutations in the homothallic fungus Aspergillus nidulans. Genetics 164:479 LP–479485
Caddick MX, Arst HN (1986) Structural genes for phosphatases in Aspergillus nidulans. Genet Res 47:83–91. https://doi.org/10.1017/S0016672300022904
Caddick MX, Brownlee AG, Arst HN (1986a) Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol Gen Genet 203:346–353
Caddick MX, Brownlee AG, Arst HN (1986b) Phosphatase regulation in Aspergillus nidulans: responses to nutritional starvation. Genet Res 47:93–102. https://doi.org/10.1017/S0016672300022916
Cánovas D, Marcos AT, Gacek A, Ramos MS, Gutiérrez G, Reyes-Domínguez Y, Strauss J (2014) The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics 197:1175–1189. https://doi.org/10.1534/genetics.114.165688
Champe SP, El-Zayat AA (1989) Isolation of a sexual sporulation hormone from Aspergillus nidulans. J Bacteriol 171:3982 LP–3983988
Champe SP, Rao P, Chang A (1987) An endogenous inducer of sexual development in Aspergillus nidulans. Microbiology 133:1383–1387. https://doi.org/10.1099/00221287-133-5-1383
Chemudupati M, Osmani AH, Osmani SA, Solomon MJ (2016) A mitotic nuclear envelope tether for Gle1 also affects nuclear and nucleolar architecture. Mol Biol Cell 27:3757–3770. https://doi.org/10.1091/mbc.e16-07-0544
Chiang Y-M, Chang S-L, Oakley BR, Wang CCC (2011) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 15:137–143. https://doi.org/10.1016/j.cbpa.2010.10.011
Chiang Y-M, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang SL, Sung CT, Wang CCC, Oakley BR (2013) An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J Am Chem Soc 135:7720–7731. https://doi.org/10.1021/ja401945a
Chiang Y-M, Ahuja M, Oakley CE, Entwistle R, Asokan A, Zutz C, Wang CCC, Oakley BR (2015) Development of genetic dereplication strains in Aspergillus nidulans results in the discovery of Aspercryptin. Angew Chem Int Ed 55:1662–1665. https://doi.org/10.1002/anie.201507097
De Souza CPC, Osmani SA (2007) Mitosis, not just open or closed. Eukaryot Cell 6:1521 LP–1521527
De Souza CP, Osmani SA (2009) Double duty for nuclear proteins – the price of more open forms of mitosis. Trends Genet 25:545–554. https://doi.org/10.1016/j.tig.2009.10.005
de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, dos Santos RAC, Damásio ARL, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVC, Vesth TC, Visser J, Yu JH, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 18:28. https://doi.org/10.1186/s13059-017-1151-0
Denison SH, Orejas M, Arst HN (1995) Signaling of ambient pH in Aspergillus involves a cysteine protease. J Biol Chem 270:28519–28522. https://doi.org/10.1074/jbc.270.48.28519
Dohn JW, Grubbs AW, Oakley CE, Oakley BR (2018) New multi-marker strains and complementing genes for Aspergillus nidulans molecular biology. Fungal Genet Biol 111:1–6. https://doi.org/10.1016/j.fgb.2018.01.003
Dorn G (1965) Phosphatase mutants in Aspergillus nidulans. Science 150(80):1183 LP–1181184. https://doi.org/10.1126/science.150.3700.1183
Dyer PS, O’Gorman CM (2012) Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev 36:165–192
Egan MJ, Tan K, Reck-Peterson SL (2012) Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol 197:971 LP–971982. https://doi.org/10.1083/jcb.201112101
Espeso EA, Tilburn J, Arst HN, Peñalva MA (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12:3947–3956. https://doi.org/10.1002/j.1460-2075.1993.tb06072.x
Espeso EA, Cobeño L, Arst HN (2005) Discrepancies between recombination frequencies and physical distances in Aspergillus nidulans: implications for gene identification. Genetics 171:835 LP–835838. https://doi.org/10.1534/genetics.105.044578
Etxebeste O, Espeso EA (2016) Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis. FEMS Microbiol Rev 021:610–624. https://doi.org/10.1093/femsre/fuw021
Etxebeste O, Takeshita N (2015) Fluorescence-based methods for the study of protein localization, interaction, and dynamics in filamentous fungi. Springer International Publishing, Switzerland, pp 27–46
Etxebeste O, Ni M, Garzia A, Kwon NJ, Fischer R, Yu JH, Espeso EA, Ugalde U (2008) Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryot Cell 7:38–48
Etxebeste O, Herrero-García E, Araújo-Bazán L, Rodríguez-Urra AB, Garzia A, Ugalde U, Espeso EA (2009a) The bZIP-type transcription factor FIbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Mol Microbiol 73:775–789
Etxebeste O, Markina-Iãrrairaegui A, Garzia A et al (2009b) Kapl, a non-essential member of the Pse1p/Imp5 karyopherin family, controls colonial and asexual development in Aspergillus nidulans. Microbiology 155:3934–3945
Etxebeste O, Ugalde U, Espeso EAA (2010) Adaptative and developmental responses to stress in Aspergillus nidulans. Curr Protein Pept Sci 11:704–718
Etxebeste O, Herrero-García E, Cortese MS, Garzia A, Oiartzabal-Arano E, de los Ríos V, Ugalde U, Espeso EA (2012) GmcA is a putative glucose-methanol-choline oxidoreductase required for the induction of asexual development in Aspergillus nidulans. PLoS One 7:e40292
Etxebeste O, Villarino M, Markina-Iñarrairaegui A, Araújo-Bazán L, Espeso EA (2013) Cytoplasmic dynamics of the general nuclear import machinery in apically growing syncytial cells. PLoS One 8:e85076. https://doi.org/10.1371/journal.pone.0085076
Findon H, Calcagno-Pizarelli A-M, Martínez JL, Spielvogel A, Markina-Iñarrairaegui A, Indrakumar T, Ramos J, Peñalva MA, Espeso EA, Arst HN Jr (2010) Analysis of a novel calcium auxotrophy in Aspergillus nidulans. Fungal Genet Biol 47:647–655. https://doi.org/10.1016/j.fgb.2010.04.002
Fischer R, Kües U (2006) Asexual sporulation in mycelial fungi. In: Kües U, Fischer R (eds) Growth. Differentiation and Sexuality. Springer, Berlin Heidelberg, pp 263–292
Fischer R, Zekert N, Takeshita N (2008) Polarized growth in fungi – interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68:813–826. https://doi.org/10.1111/j.1365-2958.2008.06193.x
Fuller KK, Chen S, Loros JJ, Dunlap JC (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14:1073 LP–1071080. https://doi.org/10.1128/EC.00107-15
Gacek-Matthews A, Berger H, Sasaki T, Wittstein K, Gruber C, Lewis ZA, Strauss J (2016) KdmB, a Jumonji histone H3 demethylase, regulates genome-wide H3K4 trimethylation and is required for normal induction of secondary metabolism in Aspergillus nidulans. PLoS Genet 12:e1006222. https://doi.org/10.1371/journal.pgen.1006222
Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MÁ, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115. https://doi.org/10.1038/nature04341
Galindo A, Hervás-Aguilar A, Rodríguez-Galán O, Vincent O, Arst HN Jr, Tilburn J, Peñalva MA (2007) PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic 8:1346–1364. https://doi.org/10.1111/j.1600-0854.2007.00620.x
Garzia A, Etxebeste O, Herrero-Garcia E, Fischer R, Espeso EA, Ugalde U (2009) Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Mol Microbiol 71:172–184
Garzia A, Etxebeste O, Herrero-García E, Ugalde U, Espeso EA (2010) The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Mol Microbiol 75:1314–1324
Garzia A, Etxebeste O, Rodríguez-Romero J, Fischer R, Espeso EA, Ugalde U (2013) Transcriptional changes in the transition from vegetative cells to asexual development in the model fungus Aspergillus nidulans. Eukaryot Cell 12:311–321
Gerke J, Braus GH (2014) Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Appl Microbiol Biotechnol 98:8443–8455. https://doi.org/10.1007/s00253-014-5997-8
Ghavami A, van der Giessen E, Onck PR (2016) Energetics of transport through the nuclear pore complex. PLoS One 11:e0148876. https://doi.org/10.1371/journal.pone.0148876
Girbardt M (1957) Der Spitzenkörper von Polystictus versicolor. Planta 50:47–59. https://doi.org/10.1007/BF01912343
Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660. https://doi.org/10.1146/annurev.cellbio.15.1.607
Hagiwara D, Kondo A, Fujioka T, Abe K (2008) Functional analysis of C2H2 zinc finger transcription factor CrzA involved in calcium signaling in Aspergillus nidulans. Curr Genet 54:325–338. https://doi.org/10.1007/s00294-008-0220-z
Han K, Han K, Yu J et al (2001) The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol 41:299–309. https://doi.org/10.1046/j.1365-2958.2001.02472.x
Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5: . doi: https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
Hernández-Ortiz P, Espeso EA (2013) Phospho-regulation and nucleocytoplasmic trafficking of CrzA in response to calcium and alkaline-pH stress in Aspergillus nidulans. Mol Microbiol 89:532–551. https://doi.org/10.1111/mmi.12294
Hernández-Ortiz P, Espeso EA (2017) Spatiotemporal dynamics of the calcineurin target CrzA. Cell Signal 29:168–180. https://doi.org/10.1016/j.cellsig.2016.11.005
Herrero-Garcia E, Perez-de-Nanclares-Arregi E, Cortese MS, Markina-Iñarrairaegui A, Oiartzabal-Arano E, Etxebeste O, Ugalde U, Espeso EA (2015) Tip-to-nucleus migration dynamics of the asexual development regulator FlbB in vegetative cells. Mol Microbiol 98:607–624. https://doi.org/10.1111/mmi.13156
Hervás-Aguilar A, Rodríguez JM, Tilburn J, Arst HN Jr, Peñalva MA (2007) Evidence for the direct involvement of the proteasome in the proteolytic processing of the Aspergillus nidulans zinc finger transcription factor PacC. J Biol Chem 282:34735–34747. https://doi.org/10.1074/jbc.M706723200
Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926. https://doi.org/10.1091/mbc.E04-09-0798
Hunter CC, Siebert KS, Downes DJ et al (2014) Multiple nuclear localization signals mediate nuclear localization of the GATA transcription factor AreA. Eukaryot Cell 13:527 LP–527538. https://doi.org/10.1128/EC.00040-14
Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, Wymore F, Wortman JR, Sherlock G (2013) Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol 13:91. https://doi.org/10.1186/1471-2180-13-91
Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N (2015) Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Sci Adv 1:e1500947. https://doi.org/10.1126/sciadv.1500947
Keller NP (2015) Translating biosynthetic gene clusters into fungal armor and weaponry. Nat Chem Biol 11:671–677. https://doi.org/10.1038/nchembio.1897
Kim YJ, Yu YM, Maeng PJ (2017) Differential control of asexual development and sterigmatocystin biosynthesis by a novel regulator in Aspergillus nidulans. Sci Rep 7:46340. https://doi.org/10.1038/srep46340
Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, Herricks T, Slaughter BD, Hogan JA, Upla P, Chemmama IE, Pellarin R, Echeverria I, Shivaraju M, Chaudhury AS, Wang J, Williams R, Unruh JR, Greenberg CH, Jacobs EY, Yu Z, de la Cruz MJ, Mironska R, Stokes DL, Aitchison JD, Jarrold MF, Gerton JL, Ludtke SJ, Akey CW, Chait BT, Sali A, Rout MP (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555:475–482. https://doi.org/10.1038/nature26003
Kirk P, Cannon P, Minter D, Stalpers J (2008) Dictionary of the Fungi (10th edition), 10th edn. CAN International, Wallingford
Kjærbølling I, Vesth TC, Frisvad JC et al (2018) Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. Proc Natl Acad Sci 115:E753 LP–E75E761. https://doi.org/10.1073/pnas.1715954115
Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci 106:10171 LP–10110176. https://doi.org/10.1073/pnas.0900604106
Krizsan K, Almasi E, Merenyi Z et al (2018) Transcriptomic atlas of mushroom development highlights an independent origin of complex multicellularity. bioRxiv. https://doi.org/10.1101/349894
Kurtz MB, Champe SP (1982) Purification and characterization of the conidial laccase of Aspergillus nidulans. J Bacteriol 151:1338 LP–1331345
Kwon N-J, Garzia A, Espeso EA, Ugalde U, Yu JH (2010) FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 77:1203–1219. https://doi.org/10.1111/j.1365-2958.2010.07282.x
Lau AW, Chou MM (2008) The adaptor complex AP-2 regulates post-endocytic trafficking through the non-clathrin Arf6-dependent endocytic pathway. J Cell Sci 121:4008–4017. https://doi.org/10.1242/jcs.033522
Lee BN, Adams TH (1994a) The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 8:641–651. https://doi.org/10.1101/gad.8.6.641
Lee BN, Adams TH (1994b) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol 14:323–334. https://doi.org/10.1111/j.1365-2958.1994.tb01293.x
Lee M-K, Kwon N-J, Lee I-S, Jung S, Kim SC, Yu JH (2016) Negative regulation and developmental competence in Aspergillus. Sci Rep 6:28874. https://doi.org/10.1038/srep28874
Li W, Mitchell AP (1997) Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63 LP–63 73
Li M, Martin SJ, Bruno VM et al (2004) Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot Cell 3:741 LP–741751. https://doi.org/10.1128/EC.3.3.741-751.2004
Liu X, Osherov N, Yamashita R et al (2001) Myosin I mutants with only 1% of wild-type actin-activated MgATPase activity retain essential in vivo function(s). Proc Natl Acad Sci 98:9122 LP–9129127. https://doi.org/10.1073/pnas.161285698
López-Berges MS, Arst Herbert NJ, Pinar M, Peñalva MA (2017) Genetic studies on the physiological role of CORVET in Aspergillus nidulans. FEMS Microbiol Lett 364:fnx065–fnx065. https://doi.org/10.1093/femsle/fnx065
López-Franco R, Bartnicki-Garcia S, Bracker CE (1994) Pulsed growth of fungal hyphal tips. Proc Natl Acad Sci 91:12228 LP–12212232
Lucena-Agell D, Galindo A, Arst HN, Peñalva MA (2015) Aspergillus nidulans ambient pH signaling does not require endocytosis. Eukaryot Cell 14:545 LP–545553. https://doi.org/10.1128/EC.00031-15
Markina-Iñarrairaegui A, Etxebeste O, Herrero-García E, Araújo-Bazán L, Fernández-Martínez J, Flores JA, Osmani SA, Espeso EA (2011) Nuclear transporters in a multinucleated organism: functional and localization analyses in Aspergillus nidulans. Mol Biol Cell 22:3874–3886. https://doi.org/10.1091/mbc.E11-03-0262
Márquez-Fernández O, Trigos Á, Ramos-Balderas JL et al (2007) Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development. Eukaryot Cell 6:710 LP–710720. https://doi.org/10.1128/EC.00362-06
Marshall MA, Timberlake WE (1991) Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 11:55–62. https://doi.org/10.1128/MCB.11.1.55
Martzoukou O, Amillis S, Zervakou A, Christoforidis S, Diallinas G (2017) The AP-2 complex has a specialized clathrin-independent role in apical endocytosis and polar growth in fungi. Elife 6:3643–3659. https://doi.org/10.7554/eLife.20083
Martzoukou O, Diallinas G, Amillis S (2018) Secretory vesicle polar sorting, endosome recycling and cytoskeleton organization require the AP-1 complex in Aspergillus nidulans. Genetics 209:1121 LP–1121138. https://doi.org/10.1534/genetics.118.301240
McGoldrick CA, Gruver C, May GS (1995) myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol 128:577–587. https://doi.org/10.1083/jcb.128.4.577
Mellado L, Calcagno-Pizarelli AM, Lockington RA, Cortese MS, Kelly JM, Arst HN Jr, Espeso EA (2015) A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans. Fungal Genet Biol 82:116–128. https://doi.org/10.1016/j.fgb.2015.06.002
Mellado L, Arst HN, Espeso EA (2016) Proteolytic activation of both components of the cation stress-responsive Slt pathway in Aspergillus nidulans. Mol Biol Cell 27:2598–2612. https://doi.org/10.1091/mbc.E16-01-0049
Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns TC, de Vries RP, Haarmann T, Hansen K, Hertz-Fowler C, Krappmann S, Mortensen UH, Peñalva MA, Ram AFJ, Head RM (2016) Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biol Biotechnol 3:6. https://doi.org/10.1186/s40694-016-0024-8
Mims CW, Richardson EA, Timberlake WE (1988) Ultrastructural analysis of conidiophore development in the fungus Aspergillus nidulans using freeze-substitution. Protoplasma 144:132–141. https://doi.org/10.1007/BF01637246
Morris NR, Efimov VP, Xiang X (1998) Nuclear migration, nucleokinesis and lissencephaly. Trends Cell Biol 8:467–470. https://doi.org/10.1016/S0962-8924(98)01389-0
Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566
Nguyen Ba AN, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinformatics 10:202. https://doi.org/10.1186/1471-2105-10-202
Nguyen M, Ekstrom A, Li X, Yin Y (2015) HGT-finder: a new tool for horizontal gene transfer finding and application to Aspergillus genomes. Toxins (Basel) 7:4035–4053
Nguyen TA, Cissé OH, Yun Wong J, Zheng P, Hewitt D, Nowrousian M, Stajich JE, Jedd G (2017) Innovation and constraint leading to complex multicellularity in the Ascomycota. Nat Commun 8:14444. https://doi.org/10.1038/ncomms14444
Ni M, Yu J-H (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2:e970. https://doi.org/10.1371/journal.pone.0000970
Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085. https://doi.org/10.1371/journal.pone.0133085
Nützmann H-W, Scazzocchio C, Osbourn A (2018) Metabolic gene clusters in eukaryotes. Annu Rev Genet 52:159–183. https://doi.org/10.1146/annurev-genet-120417-031237
O’Neil JD, Bugno M, Stanley MS et al (2002) Cloning of a novel gene encoding a C2H2 zinc finger protein that alleviates sensitivity to abiotic stresses in Aspergillus nidulans. Mycol Res 106:491–498. https://doi.org/10.1017/S0953756202005701
Oakley BR, Morris NR (1980) Nuclear movement is β-tubulin-dependent in Aspergillus nidulans. Cell 19:255–262. https://doi.org/10.1016/0092-8674(80)90407-9
Oakley CE, Oakley BR (1989) Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338:662–664
Oakley BR, Paolillo V, Zheng Y (2015) γ-Tubulin complexes in microtubule nucleation and beyond. Mol Biol Cell 26:2957–2962. https://doi.org/10.1091/mbc.e14-11-1514
Oakley CE, Ahuja M, Sun W-W, Entwistle R, Akashi T, Yaegashi J, Guo CJ, Cerqueira GC, Russo Wortman J, Wang CCC, Chiang YM, Oakley BR (2016) Discovery of McrA, a master regulator of Aspergillus secondary metabolism. Mol Microbiol 103:347–365. https://doi.org/10.1111/mmi.13562
Oiartzabal-Arano E, Garzia A, Gorostidi A, Ugalde U, Espeso EA, Etxebeste O (2015) Beyond asexual development: modifications in the gene expression profile caused by the absence of the Aspergillus nidulans transcription factor FlbB. Genetics 199:1127–1142. https://doi.org/10.1534/genetics.115.174342
Oiartzabal-Arano E, Perez-de-Nanclares-Arregi E, Espeso EA, Etxebeste O (2016) Apical control of conidiation in Aspergillus nidulans. Curr Genet 62:371–377. https://doi.org/10.1007/s00294-015-0556-0
Ojeda-López M, Chen W, Eagle CE, Gutiérrez G, Jia WL, Swilaiman SS, Huang Z, Park HS, Yu JH, Cánovas D, Dyer PS (2018) Evolution of asexual and sexual reproduction in the Aspergilli. Stud Mycol 91:37–59. https://doi.org/10.1016/j.simyco.2018.10.002
Oliver RO, Schweizer M (eds) (1999) Molecular fungal biology. Cambridge University Press, Cambridge
Orejas M, Espeso EA, Tilburn J, Sarkar S, Arst HN, Penalva MA (1995) Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev 9:1622–1632. https://doi.org/10.1101/gad.9.13.1622
Osmani AH, Davies J, Liu H-L, Nile A, Osmani SA (2006) Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol Biol Cell 17:4946–4961. https://doi.org/10.1091/mbc.e06-07-0657
Pantazopoulou A (2016) The Golgi apparatus: insights from filamentous fungi. Mycologia 108:603–622. https://doi.org/10.3852/15-309
Pantazopoulou A, Pinar M, Xiang X, Peñalva MA (2014) Maturation of late Golgi cisternae into RabE(RAB11) exocytic post-Golgi carriers visualized in vivo. Mol Biol Cell 25:2428–2443. https://doi.org/10.1091/mbc.E14-02-0710
Park H-S, Yu J-H (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15:669–677. https://doi.org/10.1016/j.mib.2012.09.006
Peñalva MA, Tilburn J, Bignell E, Arst HN (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16:291–300. https://doi.org/10.1016/j.tim.2008.03.006
Peñalva MA, Zhang J, Xiang X, Pantazopoulou A (2017) Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25 and kinesin-1 and is independent of kinesin-3. Mol Biol Cell 28:947–961
Perez-de-Nanclares-Arregi E, Etxebeste O (2014) Photo-convertible tagging for localization and dynamic analyses of low-expression proteins in filamentous fungi. Fungal Genet Biol 70:33–41. https://doi.org/10.1016/j.fgb.2014.06.006
Pontecorvo G (1952) Non-random distribution of multiple mitotic crossing-over among nuclei of heterozygous diploid Aspergillus. Nature 170:204–205
Pontecorvo G, Roper JA, Chemmons LM et al (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238. https://doi.org/10.1016/S0065-2660(08)60408-3
Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM (2013) The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 8:e74122. https://doi.org/10.1371/journal.pone.0074122
Reck-Peterson SL, Redwine WB, Vale RD, Carter AP (2018) The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol 19:382–398. https://doi.org/10.1038/s41580-018-0004-3
Riquelme M, Aguirre J, Bartnicki-García S et al (2018) Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol Mol Biol Rev 82. https://doi.org/10.1128/MMBR.00068-17
Rodríguez-Galán O, Galindo A, Hervás-Aguilar A, Arst HN Jr, Peñalva MA (2009) Physiological involvement in pH signaling of Vps24-mediated recruitment of Aspergillus PalB cysteine protease to ESCRT-III. J Biol Chem 284:4404–4412. https://doi.org/10.1074/jbc.M808645200
Rodríguez-Urra AB, Jiménez C, Nieto MI, Rodríguez J, Hayashi H, Ugalde U (2012) Signaling the induction of sporulation involves the interaction of two secondary metabolites in Aspergillus nidulans. ACS Chem Biol 7:599–606. https://doi.org/10.1021/cb200455u
Rokas A, Wisecaver JH, Lind AL (2018) The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 16:731–744. https://doi.org/10.1038/s41579-018-0075-3
Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R et al (2011) Regulation of Conidiation by light in Aspergillus nidulans. Genetics 188:809 LP–809822
Satterlee T, Cary JW, Calvo AM (2016) RmtA, a putative arginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus. PLoS One 11:e0155575
Schroeckh V, Scherlach K, Nützmann H-W et al (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci 106:14558 LP–14514563
Schultzhaus ZS, Shaw BD (2015) Endocytosis and exocytosis in hyphal growth. Fungal Biol Rev 29:43–53. https://doi.org/10.1016/j.fbr.2015.04.002
Schultzhaus Z, Johnson TB, Shaw BD (2016a) Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 103:299–318. https://doi.org/10.1111/mmi.13557
Schultzhaus Z, Quintanilla L, Hilton A, Shaw BD (2016b) Live cell imaging of actin dynamics in the filamentous fungus Aspergillus nidulans. Microsc Microanal 22:264–274. https://doi.org/10.1017/S1431927616000131
Sewall TC, Mims CW, Timberlake WE (1990) Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wetA) mutant strains. Dev Biol 138:499–508. https://doi.org/10.1016/0012-1606(90)90215-5
Sibthorp C, Wu H, Cowley G, Wong PWH, Palaima P, Morozov IY, Weedall GD, Caddick MX (2013) Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. BMC Genomics 14:847. https://doi.org/10.1186/1471-2164-14-847
Skromne I, Sanchez O, Aguirre J (1995) Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology 141:21–28. https://doi.org/10.1099/00221287-141-1-21
Soid-Raggi G, Sánchez O, Aguirre J (2005) TmpA, a member of a novel family of putative membrane flavoproteins, regulates asexual development in Aspergillus nidulans. Mol Microbiol 59:854–869. https://doi.org/10.1111/j.1365-2958.2005.04996.x
Soid-Raggi G, Sánchez O, Ramos-Balderas JL, Aguirre J (2016) The adenylate-forming enzymes AfeA and TmpB are involved in Aspergillus nidulans self-communication during asexual development. Front Microbiol 7:353. https://doi.org/10.3389/fmicb.2016.00353
Soriani FM, Malavazi I, Da Silva Ferreira ME et al (2008) Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol Microbiol 67:1274–1291. https://doi.org/10.1111/j.1365-2958.2008.06122.x
Soukup AA, Chiang Y-M, Bok JW, Reyes-Dominguez Y, Oakley BR, Wang CCC, Strauss J, Keller NP (2012) Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 86:314–330. https://doi.org/10.1111/j.1365-2958.2012.08195.x
Spatafora JW, Aime MC, Grigoriev IV et al (2017) The fungal tree of life: from molecular systematics to genome-scale phylogenies. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec.FUNK-0053-2016
Spielvogel A, Findon H, Arst HN et al (2008) Two zinc finger transcription factors, CrzA and SltA, are involved in cation homoeostasis and detoxification in Aspergillus nidulans. Biochem J 414. https://doi.org/10.1042/BJ20080344
Suresh S, Markossian S, Osmani AH, Osmani SA (2017) Mitotic nuclear pore complex segregation involves Nup2 in Aspergillus nidulans. J Cell Biol 216:2813 LP–2812826. https://doi.org/10.1083/jcb.201610019
Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou X, Espeso EA, Peñalva MA, Osmani SA, Oakley BR (2008) The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19:1439–1449. https://doi.org/10.1091/mbc.E07-05-0464
Taheri-Talesh N, Xiong Y, Oakley BR et al (2012) The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans. PLoS One 7:e31218. https://doi.org/10.1371/journal.pone.0031218
Takeshita N, Evangelinos M, Zhou L, Serizawa T, Somera-Fajardo RA, Lu L, Takaya N, Nienhaus GU, Fischer R (2017) Pulses of Ca2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci 114:5701–5706. https://doi.org/10.1073/pnas.1700204114
Teichert I, Wolff G, Kück U, Nowrousian M (2012) Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics 13:511. https://doi.org/10.1186/1471-2164-13-511
Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790
Todd RB, Davis MA, Hynes MJ (2007) Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nat Protoc 2:811–821. https://doi.org/10.1038/nprot.2007.112
Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15:109–118. https://doi.org/10.1016/j.tim.2007.01.005
Twumasi-Boateng K, Yu Y, Chen D, Gravelat FN, Nierman WC, Sheppard DC (2009) Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus. Eukaryot Cell 8:104–115. https://doi.org/10.1128/EC.00265-08
Ukil L, De Souza CP, Liu H-L et al (2009) Nucleolar separation from chromosomes during Aspergillus nidulans mitosis can occur without spindle forces. Mol Biol Cell 20:2132–2145. https://doi.org/10.1091/mbc.e08-10-1046
Upadhyay S, Shaw BD (2008) The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol Microbiol 68:690–705. https://doi.org/10.1111/j.1365-2958.2008.06178.x
Vincent O, Rainbow L, Tilburn J et al (2003) YPXL/I is a protein interaction motif recognized by Aspergillus PalA and its human homologue, AIP1/Alix. Mol Cell Biol 23:1647 LP–1641655. https://doi.org/10.1128/MCB.23.5.1647-1655.2003
Wu M-Y, Mead ME, Lee M-K, Ostrem Loss EM, Kim SC, Rokas A, Yu JH (2018) Systematic dissection of the evolutionarily conserved WetA developmental regulator across a genus of filamentous fungi. MBio 9:e01130–e01118. https://doi.org/10.1128/mBio.01130-18
Xiang X, Beckwith SM, Morris NR (1994) Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci 91:2100–2104
Xiang X, Qiu R, Yao X, Arst HN, Peñalva MA, Zhang J (2015) Cytoplasmic dynein and early endosome transport. Cell Mol Life Sci 72:3267–3280. https://doi.org/10.1007/s00018-015-1926-y
Yamashita RA, May GS (1998) Constitutive activation of endocytosis by mutation of myoA, the myosin I gene of Aspergillus nidulans. J Biol Chem 273:14644–14648. https://doi.org/10.1074/jbc.273.23.14644
Yamashita RA, Osherov N, May GS (2000) Localization of wild type and mutant class I myosin proteins in Aspergillus nidulans using GFP-fusion proteins. Cell Motil 45:163–172. https://doi.org/10.1002/(SICI)1097-0169(200002)45:2<163::AID-CM7>3.0.CO;2-D
Yang L, Ukil L, Osmani A, Nahm F, Davies J, de Souza CPC, Dou X, Perez-Balaguer A, Osmani SA (2004) Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryot Cell 3:1359–1362. https://doi.org/10.1128/EC.3.5.1359-1362.2004
Yeh H-H, Chang S-L, Chiang Y-M, Bruno KS, Oakley BR, Wu TK, Wang CCC (2013) Engineering fungal nonreducing polyketide synthase by heterologous expression and domain swapping. Org Lett 15:756–759. https://doi.org/10.1021/ol303328t
Yu JH, Wieser J, Adams TH (1996) The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J 15:5184–5190
Zhang C, Meng X, Wei X, Lu L (2016) Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol 86:47–57. https://doi.org/10.1016/j.fgb.2015.12.007