Aspects of the Kahane–Salem–Zygmund inequalities in Banach spaces
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas - Tập 117 - Trang 1-40 - 2022
Tóm tắt
The main aim of this work is to discuss several different approaches to the celebrated Kahane–Salem–Zygmund inequalities. In particular, we prove estimates for exponential Orlicz norms of averages
$$\sup _{1\le j\le N}\Big |\sum _{i=1}^K a_i(j) \gamma _i\Big |\,,$$
where
$$ (a_i(j)) \in \ell _\infty ^N, \, 1 \le i \le K$$
and the
$$(\gamma _i)$$
form a sequence of real or complex subgaussian random variables. Lifting these inequalities to finite dimensional Banach spaces, we get some new Kahane–Salem–Zygmund type inequalities—in particular, for spaces of subgaussian random polynomials and multilinear forms on finite dimensional Banach spaces, and also for subgaussian random Dirichlet polynomials.
Tài liệu tham khảo
Abramovich, Y.A., Lozanovskii, G.. Ja.: Some numerical characterizations of \(K\!N\)-lineals, Mat. Zametki 14, 723–732 (in Russian). English Transl. Math. Notes 14(1973), 973–978 (1973)
Albuquerque, N.G., Rezende, L.: Asymptotic estimates for unimodular multilinear forms with small norms on sequence spaces. Bull. Br. Math. Soc. (N.S.) 52(1), 23–39 (2021)
Alon, N., Spencer, J.: The probabilistic method, Wiley Interscience Series in Discrete Mathematics and Optimization (1992)
Bayart, F.: Maximum modulus of random polynomials. Quart. J. Math. 63, 21–39 (2012)
Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)
Boas, H.: Majorant series. J. Korean Math. Soc. 37, 321–337 (2000)
Bourgain, J.: Bounded orthogonal systems and the \(\Lambda (p)\)-set problem. Acta Math. 162(3–4), 227–245 (1989)
Brudnyi, Y.A., Krugljak, N.Y.: Interpolation Functors and Interpolation Spaces I. North-Holland, Amsterdam (1991)
Bukhvalov, A. V.: Theorems on interpolation of sublinear operators in spaces with mixed norm, In: Qualitative and Approximate Methods for Investigation of Operator Equations, Jaroslavl 1984, 90–105
Costa Pereira, N.: Sharp elementary estimates for the sequence of primes, Portugal. Math. 43(4), 399–406 (1985/86)
Defant, A., García, D., Maestre, M.: Bohr’s power series theorem and local Banach space theory. J. Reine Angew. Math. 557, 173–197 (2003)
Defant, A., García, D., Maestre, M.: Maximum moduli of unimodular polynomials in several variables. J. Korean Math. Soc. 41, 209–230 (2004)
Defant, A., García, D., Maestre, M., Sevilla Peris, P.: Dirichlet series and holomorphic functions in high dimensions, New Mathematical Monographs Series, Cambridge University Press, Cambridge (2019)
Defant, A., Mastyło, M.: Norm estimates for random polynomials on the scale of Orlicz spaces. Banach J. Math. Anal. 11(2), 335–347 (2017)
Dineen, S.: Complex Analysis on Infinite-Dimensional Spaces. Springer Monographs in Mathematics, Springer, London (1999)
Erdös, P., Szekeres, G.: On the product \(\prod _{k=1}^n (1 - z^{a_k})\). Acad. Serbe Sci. Publ. Inst. Math. 13, 29–34 (1959)
Hálasz, G.: On a result of Salem and Zygmund concerning random polynomials. Studia Sci. Math. Hungar. 8, 369–377 (1973)
Harris, L.A.: A Bernstein-Markov theorem for normed spaces. J. Math. Anal. Appl. 208, 476–486 (1997)
Kahane, J.-P.: Some random series of functions, 2nd ed., Cambridge Stud. Adv. Math., vol. 5, Cambridge Univ., Cambridge and New York (1985)
Ledoux, M., Talagrand, M.: Probability in Banach spaces, Classics in Mathematics. Springer. Isoperimetry and Processes, Berlin (2011)
Mastyło, M.: An operator ideal generated by Orlicz spaces. Math. Ann. 376(3–4), 1675–1703 (2020)
Mastyło, M., Szwedek, R.: Kahane-Salem-Zygmund polynomial inequalities via Rademacher processes. J. Funct. Anal. 272(11), 4483–4512 (2017)
Mockenhaupt, G., Schlag, W.: On the Hardy-Littlewood majorant problem for random sets. J. Funct. Anal. 256(4), 1189–1237 (2009)
Musielak, J.: Orlicz spaces and modular spaces. Lecture Notes in Math, vol. 1034. Springer, Berlin (1983)
Odlyzko, A.M.: Minima of cosine sums and maxima of polynomials on the unit circle. J. Lond. Math. Soc. (2) 26(3), 412–420 (1982)
Ovchinnikov, V.I.: Interpolation theorems that arrise from Grothendieck’s inequality. Funktional. Anal. i Prilozhen. 10(4), 45–54 (1976) (Russina)
Ovchinnikov, V. I.: The method of orbits in interpolation theory, Math. Rep., 1, Part 2 349–516 (1984)
Pellegrino, D., Serrano-Rodríguez, D., Silva, J.: On unimodular multilinear forms with small norms on sequence spaces. Linear Algebra Appl. 595, 24–32 (2020)
Peskir, G.: Best constants in Kahane–Khintchine inequalities in Orlicz spaces. J. Multivar. Anal. 45(2), 183–216 (1993)
Pisier, G.: De nouvelles caractérisations des ensembles de Sidon. Adv. Math. Suppl. Stud. 7B, 686–725 (1981)
Pisier, G.: Subgaussian sequences in probability and Fourier analysis. Grad. J. Math. 1(2), 60–80 (2016)
Queffélec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995)
Queffélec, H., Queffélec, M.: Diophantine approximation and Dirichlet series, Hindustan Book Agency, Lecture Note 2, (2013)
Rodin, V.A., Semyonov, E.M.: Rademacher series in symmetric spaces. Anal. Math. 1(3), 207–222 (1975)
Salem, R., Zygmund, A.: Some properties of trigonometric series whose terms have random signs. Acta Math. 91, 245–301 (1954)
Tomczak-Jaegermann, N.: Banach-Mazur distances and finite-dimensional operator ideals. Longman Scientific & Technical (1989)
Tsekrekos, P.C.: Some applications of the \(L\)-constants and \(M\)-constants on Banach lattices. J. Lond. Math. Soc. 18(2), 133–139 (1978)
Turán, P.: On Lindelöf’s conjecture concerning the Riemann Zeta function. Illinois J. Math. 6, 95–97 (1962)
Weber, M.: On a stronger form of Salem-Zygmund’s inequality for Random trigonometric sums with examples. Periodica Math. Hung. 52(2), 73–104 (2006)
Wilhelmsen, D.R.: A Markov inequality in several dimensions. J. Approx. Theory 11, 216–220 (1974)
Wojtaszczyk, P.: Banach Spaces for Analyst. Cambridge Studies in Advanced Mathematics, vol. 25. Cambridge University Press, Cambridge (1991)
Zygmund, A.: Trigonometric Series, Vol. I, 2nd edition, Cambridge University Press, New York (1959)