Aspects of cosmologies with complete scenario

Chinese Journal of Physics - Tập 81 - Trang 125-133 - 2023
A. Singh1, A. Beesham2,3,4, N.K. Tripathi5
1Centre for Cosmology, Astrophysics and Space Science, GLA University, Mathura, Uttar Pradesh 281406, India
2Department of Mathematical Sciences, University of Zululand, KwaDlangezwa 3886, South Africa
3National Institute for Theoretical and Computational Sciences, South Africa
4Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
5Department of Applied Sciences and Humanities, National Institute of Advanced Manufacturing Technology, Ranchi, Jharkhand 834003, India

Tài liệu tham khảo

Riess, 1998, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009, 10.1086/300499 Perlmutter, 1999, Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J., 517, 565, 10.1086/307221 Aghanim, 2020, Planck 2018 results VI cosmological parameters, Astron. Astrophys., 641, A6, 10.1051/0004-6361/201833910 Bamba, 2012, Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci., 342, 155, 10.1007/s10509-012-1181-8 Nojiri, 2017, Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Phys. Rep., 692, 1, 10.1016/j.physrep.2017.06.001 Capozziello, 2019, Extended gravity cosmography, Internat. J. Modern Phys. D, 28, 10.1142/S0218271819300167 Akarsu, 2014, Cosmology with hybrid expansion law: Scalar field reconstruction of cosmic history and observational constraints, J. Cosmol. Astropart. Phys., 01, 022, 10.1088/1475-7516/2014/01/022 Moraes, 2016, A complete cosmological scenario from f(R,Tϕ) gravity theory, Eur. Phys. J. C, 76, 60, 10.1140/epjc/s10052-016-3912-4 Cruz, 2020, Non-zero torsion and late cosmology, Eur. Phys. J. C, 80, 559, 10.1140/epjc/s10052-020-8128-y Fomin, 2020, Generalized scalar-tensor theory of gravity reconstruction from physical potentials of a scalar field, Eur. Phys. J. C, 80, 350, 10.1140/epjc/s10052-020-7893-y Mishra, 2020, Phase transition of cosmological model with statistical techniques, Astrophys. Space Sci., 365, 131, 10.1007/s10509-020-03843-0 Singh, 2020, A complete cosmological scenario with particle creation, Astrophys. Space Sci., 365, 54, 10.1007/s10509-020-03768-8 Panotopoulos, 2021, Lagrangian formulation for an extended cosmological equation-of-state, Phys. Dark Uni., 31 Singh, 2022, Lagrangian formulation and implications of barotropic fluid cosmologies, Int. J. Geom. Methods Mod. Phys., 19, 10.1142/S0219887822501079 Varshney, 2021, Reconstruction of tachyon, Dirac-Born–Infeld-essence and phantom model for tsallis holographic dark energy in f(R, T) gravity, Chin. J. Phys., 73, 56, 10.1016/j.cjph.2021.04.014 Bhardwaj, 2021, Compatibility between the scalar field models of tachyon, k-essence and quintessence in f(R, T) gravity, New Astronomy, 83, 10.1016/j.newast.2020.101478 Dixit, 2022, Cosmological scenario in κ(R,T) gravity, Int. J. Geom. Methods Mod. Phys., 19, 10.1142/S021988782250013X Pradhan, 2020, An FLRW interacting dark energy model of the universe, New Astron., 78, 10.1016/j.newast.2020.101368 Tripathy, 2021, Cosmological models with a hybrid scale factor, Int. J. Mod. Phys. D, 30, 10.1142/S0218271821400058 Mishra, 2020, Cosmological models with squared trace in modified gravity, Internat. J. Modern Phys. D, 29, 10.1142/S021827182050100X Singh, 2018, Thermodynamical and observational aspects of cosmological model with linear equation of state, Int. J. Geom. Methods Mod. Phys., 15, 10.1142/S0219887818501293 Singh, 2020, Aspects of some rastall cosmologies, Eur. Phys. J. Plus, 135, 752, 10.1140/epjp/s13360-020-00783-0 Singh, 2021, Thermodynamic implications of Brans–Dicke cosmologies, Eur. Phys. J. Plus, 136, 522, 10.1140/epjp/s13360-021-01519-4 Singh, 2020, Study of particle creation with quadratic equation of state in higher derivative theory, Braz. J. Phys., 50, 725, 10.1007/s13538-020-00788-1 Rezaei, 2020, Observational constraints and stability in viscous gravity, Can. J. Phys., 98, 1119, 10.1139/cjp-2020-0174 Caldwell, 2005, Limits of quintessence, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.141301 Linder, 2006, Paths of quintessence, Phys. Rev. D, 73, 10.1103/PhysRevD.73.063010 Scherrer, 2008, Thawing quintessence with a nearly flat potential, Phys. Rev. D, 77, 10.1103/PhysRevD.77.083515 Nojiri, 2005, Inhomogeneous equation of state of the universe: Phantom era, future singularity, and crossing the phantom barrier, Phys. Rev. D., 72, 10.1103/PhysRevD.72.023003 Nojiri, 2010, Is the future universe singular: Dark matter versus modified gravity?, Phys. Lett. B, 686, 44, 10.1016/j.physletb.2010.02.017 Bamba, 2016, Inflation in a viscous fluid model, Eur. Phys. J. C, 76, 18, 10.1140/epjc/s10052-015-3861-3 Astashenok, 2012, Scalar dark energy models mimicking ΛCDM with arbitrary future evolution, Phys. Lett. B, 713, 145, 10.1016/j.physletb.2012.06.017 Singh, 2022, Cosmic dynamics and qualitative study of Rastall model with spatial curvature, Internat. J. Modern Phys. A, 37, 10.1142/S0217751X22501044 Dodelson, 2003 Yi, 2018, On the constant-roll inflation, J. Cosmol. Astropart. Phys., 03, 052, 10.1088/1475-7516/2018/03/052 Curiel, 2017, A primer on energy conditions, vol. 13, 43 Sahni, 2003, Statefinder—A new geometrical diagnostic of dark energy, JETP Lett., 77, 201, 10.1134/1.1574831 Novello, 2008, Bouncing cosmologies, Phys. Rep., 463, 127, 10.1016/j.physrep.2008.04.006 Singh, 2015, Bounce conditions for FRW models in modified gravity theories, Eur. Phys. J. Plus, 130, 31, 10.1140/epjp/i2015-15031-7 Singh, 2016, Bouncing cosmologies with viscous fluids, Astrophys. Space Sci., 361, 106, 10.1007/s10509-016-2696-1 Ahmad, 2021, F(G, T) gravity bouncing universe with cosmological parameters, Chin. J. Phys., 71, 770, 10.1016/j.cjph.2021.04.009