Aspects of cosmologies with complete scenario
Tài liệu tham khảo
Riess, 1998, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009, 10.1086/300499
Perlmutter, 1999, Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J., 517, 565, 10.1086/307221
Aghanim, 2020, Planck 2018 results VI cosmological parameters, Astron. Astrophys., 641, A6, 10.1051/0004-6361/201833910
Bamba, 2012, Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci., 342, 155, 10.1007/s10509-012-1181-8
Nojiri, 2017, Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Phys. Rep., 692, 1, 10.1016/j.physrep.2017.06.001
Capozziello, 2019, Extended gravity cosmography, Internat. J. Modern Phys. D, 28, 10.1142/S0218271819300167
Akarsu, 2014, Cosmology with hybrid expansion law: Scalar field reconstruction of cosmic history and observational constraints, J. Cosmol. Astropart. Phys., 01, 022, 10.1088/1475-7516/2014/01/022
Moraes, 2016, A complete cosmological scenario from f(R,Tϕ) gravity theory, Eur. Phys. J. C, 76, 60, 10.1140/epjc/s10052-016-3912-4
Cruz, 2020, Non-zero torsion and late cosmology, Eur. Phys. J. C, 80, 559, 10.1140/epjc/s10052-020-8128-y
Fomin, 2020, Generalized scalar-tensor theory of gravity reconstruction from physical potentials of a scalar field, Eur. Phys. J. C, 80, 350, 10.1140/epjc/s10052-020-7893-y
Mishra, 2020, Phase transition of cosmological model with statistical techniques, Astrophys. Space Sci., 365, 131, 10.1007/s10509-020-03843-0
Singh, 2020, A complete cosmological scenario with particle creation, Astrophys. Space Sci., 365, 54, 10.1007/s10509-020-03768-8
Panotopoulos, 2021, Lagrangian formulation for an extended cosmological equation-of-state, Phys. Dark Uni., 31
Singh, 2022, Lagrangian formulation and implications of barotropic fluid cosmologies, Int. J. Geom. Methods Mod. Phys., 19, 10.1142/S0219887822501079
Varshney, 2021, Reconstruction of tachyon, Dirac-Born–Infeld-essence and phantom model for tsallis holographic dark energy in f(R, T) gravity, Chin. J. Phys., 73, 56, 10.1016/j.cjph.2021.04.014
Bhardwaj, 2021, Compatibility between the scalar field models of tachyon, k-essence and quintessence in f(R, T) gravity, New Astronomy, 83, 10.1016/j.newast.2020.101478
Dixit, 2022, Cosmological scenario in κ(R,T) gravity, Int. J. Geom. Methods Mod. Phys., 19, 10.1142/S021988782250013X
Pradhan, 2020, An FLRW interacting dark energy model of the universe, New Astron., 78, 10.1016/j.newast.2020.101368
Tripathy, 2021, Cosmological models with a hybrid scale factor, Int. J. Mod. Phys. D, 30, 10.1142/S0218271821400058
Mishra, 2020, Cosmological models with squared trace in modified gravity, Internat. J. Modern Phys. D, 29, 10.1142/S021827182050100X
Singh, 2018, Thermodynamical and observational aspects of cosmological model with linear equation of state, Int. J. Geom. Methods Mod. Phys., 15, 10.1142/S0219887818501293
Singh, 2020, Aspects of some rastall cosmologies, Eur. Phys. J. Plus, 135, 752, 10.1140/epjp/s13360-020-00783-0
Singh, 2021, Thermodynamic implications of Brans–Dicke cosmologies, Eur. Phys. J. Plus, 136, 522, 10.1140/epjp/s13360-021-01519-4
Singh, 2020, Study of particle creation with quadratic equation of state in higher derivative theory, Braz. J. Phys., 50, 725, 10.1007/s13538-020-00788-1
Rezaei, 2020, Observational constraints and stability in viscous gravity, Can. J. Phys., 98, 1119, 10.1139/cjp-2020-0174
Caldwell, 2005, Limits of quintessence, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.141301
Linder, 2006, Paths of quintessence, Phys. Rev. D, 73, 10.1103/PhysRevD.73.063010
Scherrer, 2008, Thawing quintessence with a nearly flat potential, Phys. Rev. D, 77, 10.1103/PhysRevD.77.083515
Nojiri, 2005, Inhomogeneous equation of state of the universe: Phantom era, future singularity, and crossing the phantom barrier, Phys. Rev. D., 72, 10.1103/PhysRevD.72.023003
Nojiri, 2010, Is the future universe singular: Dark matter versus modified gravity?, Phys. Lett. B, 686, 44, 10.1016/j.physletb.2010.02.017
Bamba, 2016, Inflation in a viscous fluid model, Eur. Phys. J. C, 76, 18, 10.1140/epjc/s10052-015-3861-3
Astashenok, 2012, Scalar dark energy models mimicking ΛCDM with arbitrary future evolution, Phys. Lett. B, 713, 145, 10.1016/j.physletb.2012.06.017
Singh, 2022, Cosmic dynamics and qualitative study of Rastall model with spatial curvature, Internat. J. Modern Phys. A, 37, 10.1142/S0217751X22501044
Dodelson, 2003
Yi, 2018, On the constant-roll inflation, J. Cosmol. Astropart. Phys., 03, 052, 10.1088/1475-7516/2018/03/052
Curiel, 2017, A primer on energy conditions, vol. 13, 43
Sahni, 2003, Statefinder—A new geometrical diagnostic of dark energy, JETP Lett., 77, 201, 10.1134/1.1574831
Novello, 2008, Bouncing cosmologies, Phys. Rep., 463, 127, 10.1016/j.physrep.2008.04.006
Singh, 2015, Bounce conditions for FRW models in modified gravity theories, Eur. Phys. J. Plus, 130, 31, 10.1140/epjp/i2015-15031-7
Singh, 2016, Bouncing cosmologies with viscous fluids, Astrophys. Space Sci., 361, 106, 10.1007/s10509-016-2696-1
Ahmad, 2021, F(G, T) gravity bouncing universe with cosmological parameters, Chin. J. Phys., 71, 770, 10.1016/j.cjph.2021.04.009