Asking Infinite Voters ‘Who is a J?’: Group Identification Problems in $\mathbb {N}$
Tóm tắt
We analyze the problem of classifying individuals in a group N taking into account their opinions about which of them should belong to a specific subgroup N′⊆ N, in the case that |N| > ∞. We show that this problem is relevant in cases in which the group changes in time and/or is subject to uncertainty. The approach followed here to find the ensuing classification is by means of a Collective Identity Function (CIF) that maps the set of opinions into a subset of N. Kasher and Rubinstein (Logique & Analyse, 160, 385–395 1997) characterized different CIFs axiomatically when |N| < ∞, in particular, the Liberal and Oligarchic aggregators. We show that in the infinite setting, the liberal result is still valid but the result no longer holds for the oligarchic case and give a characterization of all the aggregators satisfying the same axioms as the Oligarchic CIF. In our motivating examples, the solution obtained according to the alternative CIF is most cogent.