Ashtekar Variables: Structures in Bundles

Vietnam Journal of Mathematics - Tập 44 - Trang 203-214 - 2016
Christian Fleischhack1,2, Philipp Levermann2,3
1Institut für MathematikUniversität Paderborn, Paderborn, Germany
2Department Mathematik, Universität Hamburg, Hamburg, Germany
3II. Institut für Theoretische Physik, Universität Hamburg, Hamburg, Germany

Tóm tắt

Canonical gravity can be formulated by means of a densitized dreibein field together with an SU(2) connection. These so-called Ashtekar variables are the fundamental quantities, loop quantum gravity is resting on. In this paper, we review these variables from the perspective of fibre bundles. This is straightforward for the dreibein field as this is simply a frame field. The Ashtekar connection, however, is more complicated. It turns out that, at the level of the tangent bundle, it is given by the Levi-Civita connection plus a multiple of the Weingarten mapping, whose action on vector fields is induced from the vector product on $\mathbb {R}^{3}$ . Lifted to the spin bundle, one regains the well-known SU(2) Ashtekar connection. At the end, we apply our results to Friedmann–Robertson–Walker spacetimes.

Tài liệu tham khảo

Ashtekar, A.: New Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587–1602 (1987) Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244–2247 (1986) Barbero, F.: Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 51, 5507–5510 (1995) [arXiv:gr-qc/9410014] Bernal, A.N., Sánchez, M.: Further Results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006) [arXiv:gr-qc/0512095] Bernal, A.N., Sánchez, M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470. arXiv:gr-qc/0306108 Fourès-Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952) Friedrich, T.: Dirac-Operatoren in der Riemannschen Geometrie. Vieweg (1997) Geroch, R.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970) Immirzi, G.: Real and complex connections for canonical gravity. Class. Quant. Grav. 14, L177—L181 (1997) [arXiv:gr-qc/9612030] Kirby, R.C.: The Topology of 4-Manifolds. Lecture Notes in Mathematics, vol. 1374. Springer (1989) Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Wiley, New York (1963) Levermann, P.: Geometrie des Ashtekar-Zusammenhangs (Diplomarbeit). Universität Hamburg (2009) Ringström, H.: The Cauchy Problem in General Relativity (ESI Lectures in Mathematics and Physics). European Mathematical Society (2009) Straumann, N.: General Relativity: with Applications to Astrophysics. Springer (2004) Thiemann, T.: Quantum spin dynamics (QSD). Class. Quant. Grav. 15, 839–873 (1998). arXiv:gr-qc/9606089 Wald, R.M.: General Relativity. Chicago University Press (1984)