Aryltrimethylammonium Tetrafluoroborates in Nickel-Catalyzed C–P Bond-Forming Reactions

Pleiades Publishing Ltd - Tập 57 - Trang 954-960 - 2021
Chun Jing Li1
1Department of Chemistry and Environmental Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, China

Tóm tắt

The first nickel-catalyzed phosphorylation of aryltrimethylammonium tetrafluoroborates with the formation of C–P bond instead of C–N has been developed. Starting from easily available and inexpensive aromatic amines, a variety of important arylphosphonates have been synthesized in moderate to excellent yields.

Tài liệu tham khảo

Tang, W. and Zhang, X., Chem. Rev., 2003, vol. 103, p. 3029. https://doi.org/10.1021/cr020049i Baumgartner, T. and Réau, R., Chem. Rev., 2006, vol.106, p. 4681. https://doi.org/10.1021/cr040179m Shie, J.J., Fang, J.M., Wang, S.Y., Tsai, K.C., Cheng, Y.S.E., Yang, A.S., Hsiao, S.C., Su, C.Y., and Wong, C.H., J. Am. Chem. Soc., 2007, vol. 129, p. 11892. https://doi.org/10.1021/ja073992i Schug, K.A. and Lindner, W., Chem. Rev., 2005, vol. 105, p. 67. https://doi.org/10.1021/cr040603j Monge, S. and David, G., Phosphorus-Based Polymers: From Synthesis to Applications, Cambridge, UK: Roy. Soc. Chem., 2014. Montchamp, J.L., Acc. Chem. Res., 2014, vol. 47, p. 77. https://doi.org/10.1021/ar400071v Helmchen, G. and Pfaltz, A., Acc. Chem. Res., 2000, vol. 33, p. 336. https://doi.org/10.1021/ar9900865 Hirao, T., Masunaga, T., Ohishiro, Y., and Agawa, T., Tetrahedron Lett., 1980, vol. 21, p. 3595. https://doi.org/10.1016/0040-4039(80)80245-0 Hirao, T., Masunaga, T., Ohshiro, Y., and Agawa, T., Synthesis, 1981, vol. 1981, no. 1, p. 56. https://doi.org/10.1055/s-1981-29335 Zhang, X., Liu, H., Hu, X., Tang, G., Zhu, J., and Zhao, Y., Org. Lett., 2011, vol. 13, p. 3478. https://doi.org/10.1021/ol201141m Xuan, J., Zeng, T.T., Chen, J.R., Lu, L.Q., and Xiao, W.J., Chem. – Eur. J., 2015, vol. 21, p. 4962. https://doi.org/10.1002/chem.201500227 Yu, R.R., Chen, X.Y., Martin, S.F., and Wang, Z.Q., Org. Lett., 2017, vol. 19, p. 1808. https://doi.org/10.1021/acs.orglett.7b00579 Isshiki, R., Muto, K., and Yamaguchi, J., Org. Lett., 2018, vol. 20, p. 1150. https://doi.org/10.1021/acs.orglett.8b00080 Miao, T. and Wang, L., Adv. Synth. Catal., 2014, vol. 356, p. 967. https://doi.org/10.1002/adsc.201300983 Zhuang, R., Xu, J., Cai, Z., Tang, G., Fang, M., and Zhao, Y., Org. Lett., 2011, vol. 13, p. 2110. https://doi.org/10.1021/ol200465z Wang, T., Sang, S., Liu, L., Qiao, H., Gao, Y., and Zhao, Y., J. Org. Chem., 2014, vol. 79, p. 608. https://doi.org/10.1021/jo402392t Sun, M., Zhang, H.Y., Han, Q., Yang, K., and Yang, S.D., Chem. – Eur. J., 2011, vol. 17, p. 9566. https://doi.org/10.1002/chem.201101930 Zhang, J.S., Chen, T.Q., Yang, J., and Han, L.B., Chem. Commun., 2015, vol. 51, p. 7540. https://doi.org/10.1039/C5CC01182E Berrino, R., Cacchi, S., Fabrizi, G., Goggiamani, A., and Stabile, P., Org. Biomol. Chem., 2010, vol. 8, p. 4518. https://doi.org/10.1039/c0ob00243g He, Y., Wu, H.M., and Toste, D.F., Chem. Sci., 2015, vol. 6, p. 1194. https://doi.org/10.1039/C4SC03092C Peng, H.H., Cai, R., Xu, C., Chen, H., and Shi, X.D., Chem. Sci., 2016, vol. 7, p. 6190. https://doi.org/10.1039/C6SC01742H Luo, H. Q., Liu, H.D., Chen, X.W., Wang, K.K., Luo, X.Z., and Wang, K.J., Chem. Commun., 2017, vol. 53, p. 956. https://doi.org/10.1039/C6CC08408G Wang, S., Guo, R., Wang, G., Chen, S.Y., and Yu, X.Q., Chem. Commun., 2014, vol. 50, p. 12718. https://doi.org/10.1039/C4CC06246A Min, M., Kang, D., Jung, S.W., and Hong, S.W., Adv. Synth. Catal., 2016, vol. 358, p. 1296. https://doi.org/10.1002/adsc.201600014 Wenkert, E., Han, A.L., and Jenny, C.J., J. Chem. Soc., Chem. Commun., 1988, no. 14, p. 975. https://doi.org/10.1039/C39880000975 Yang, B. and Wang, Z.X., J. Org. Chem., 2019, vol. 84, p. 1500. https://doi.org/10.1021/acs.joc.8b02926 Li, C.J., Russ. J. Gen. Chem., 2020, vol. 90, p. 725. https://doi.org/10.1134/s1070363220040258