Artificial neural networks towards average properties targets in styrene ARGET-ATRP

Chemical Engineering Journal - Tập 407 - Trang 126999 - 2021
Guilherme Banin1, Roniérik Pioli Vieira1, Liliane Maria Ferrareso Lona1
1Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas. 13083-852 Albert Einstein Av., Campinas, São Paulo, Brazil

Tài liệu tham khảo

Nicolas, 2007, Nanostructured latex particles synthesized by nitroxide-mediated controlled/living free-radical polymerization in emulsion, Polymer (Guildf)., 48, 7029, 10.1016/j.polymer.2007.09.039 Dire, 2009, Nitroxide-Mediated Controlled/Living Free-Radical Surfactant-Free Emulsion Polymerization of Methyl Methacrylate Using a Poly(methacrylic acid)-Based Macroalkoxyamine Initiator, Macromolecules, 42, 95, 10.1021/ma802083g S.K. Fierens, D.R. D’hooge, P.H.M. Van Steenberge, M.-F. Reyniers, G.B. Marin, MAMA-SG1 initiated nitroxide mediated polymerization of styrene: From Arrhenius parameters to model-based design, Chem. Eng. J. 278 (2015) 407–420. doi:https://doi.org/10.1016/j.cej.2014.09.024. Abreu, 2016, Nitroxide-Mediated Polymerization of Vinyl Chloride at Low Temperature: Kinetic and Computational Studies, Macromolecules, 49, 490, 10.1021/acs.macromol.5b02017 Delaittre, 2005, Surfactant-free synthesis of amphiphilic diblock copolymer nanoparticles via nitroxide-mediated emulsion polymerization, Chem. Commun., 614, 10.1039/b415959d S.K. Fierens, S. Telitel, P.H.M. Van Steenberge, M.-F. Reyniers, G.B. Marin, J.-F. Lutz, D.R. D’hooge, Model-Based Design To Push the Boundaries of Sequence Control, Macromolecules. 49 (2016) 9336–9344. doi:10.1021/acs.macromol.6b01699. Pan, 2018, Externally controlled atom transfer radical polymerization, Chem. Soc. Rev., 47, 5457, 10.1039/C8CS00259B Matyjaszewski, 2012, Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules, 45, 4015, 10.1021/ma3001719 Ribelli, 2019, Atom Transfer Radical Polymerization : Billion Times More Active Catalysts and New Initiation Systems, Macromol. Rapid Commun., 40, 1, 10.1002/marc.201800616 Gao, 2006, Synthesis of Star Polymers by a Combination of ATRP and the “ Click ” Coupling Method, Macromolecules., 39, 4960, 10.1021/ma060926c Simakova, 2012, Aqueous ARGET ATRP, Macromolecules., 45, 6371, 10.1021/ma301303b Jakubowski, 2006, Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene, Macromolecules., 39, 39, 10.1021/ma0522716 Konkolewicz, 2012, ICAR ATRP with ppm Cu Catalyst in Water, Macromolecules., 45, 4461, 10.1021/ma300887r A.J.D. Magenau, N.C. Strandwitz, A. Gennaro, K. Matyjaszewski, N.C. Gennaro, S. Armando, K. Matyjaszewski, Electrochemically Mediated Atom Transfer Radical Polymerization, Science (80-.). 332 (2011) 81–84. doi:10.1126/science.1202357. Konkolewicz, 2014, SARA ATRP or SET-LRP. End of controversy?, Polym. Chem., 5, 4396, 10.1039/c4py00149d Jakubowski, 2008, Polystyrene with improved chain-end functionality and higher molecular weight by ARGET ATRP, Macromol. Chem. Phys., 209, 32, 10.1002/macp.200700425 K.A. Payne, H.M. Van Steenberge, R.D. Dagmar, M.-F. Reyniers, G.B. Marin, R. AHutchinson, F. Cunningham, Controlled synthesis of poly [(butyl methacrylate) - co - (butyl acrylate)] via activator regenerated by electron transfer atom transfer radical polymerization: insights and improvement, Polym. Int. 63 (2014) 848–857. doi:10.1002/pi.4678. C.T. Porras, D.R. D’hooge, P.H.M. Van Steenberge, M.-F. Reyniers, G.B. Marin, A Theoretical Exploration of the Potential of ICAR ATRP for One- and Two-Pot Synthesis of Well-Defined Diblock Copolymers, Macromol. React. Eng. 7 (2013) 311–326. doi:10.1002/mren.201200085. C.T. Porras, R.D. Dagmar, P.H.M. Van Steenberge, G.B. Marin, ICAR ATRP for Estimation of Intrinsic Macro-Activation / Deactivation Arrhenius Parameters under Polymerization Conditions, (2014). doi:10.1021/ie5007596. S.K. Fierens, P.H.M. Van Steenberge, G.B. Marin, R.D. Dagmar, How Penultimate Monomer Unit Effects and Initiator Influence ICAR ATRP of n -Butyl Acrylate and Methyl Methacrylate, 63 (2017) 4971–4986. doi:10.1002/aic.15851. N. De Rybel, P.H.M. Van Steenberge, M.F. Reyniers, C. Barner-Kowollik, D.R. D’hooge, G.B. Marin, An Update on the Pivotal Role of Kinetic Modeling for the Mechanistic Understanding and Design of Bulk and Solution RAFT Polymerization, Macromol. Theory Simulations. 26 (2017) 1–19. doi:10.1002/mats.201600048. De Rybel, 2018, How chain length dependencies interfere with the bulk RAFT polymerization rate and microstructural control, Chem. Eng. Sci., 177, 163, 10.1016/j.ces.2017.11.043 D’Hooge, 2016, The strength of multi-scale modeling to unveil the complexity of radical polymerization, Prog. Polym. Sci., 58, 59, 10.1016/j.progpolymsci.2016.04.002 Zhou, 2016, State-of-the-Art and Progress in Method of Moments for the Model-Based Reversible-Deactivation Radical Polymerization, Macromol. React. Eng., 10, 516, 10.1002/mren.201500080 Mastan, 2015, Method of moments: A versatile tool for deterministic modeling of polymerization kinetics, Eur. Polym. J., 68, 139, 10.1016/j.eurpolymj.2015.04.018 D.R. D’hooge, P.H.M. Van Steenberge, P. Derboven, M.-F. Reyniers, G.B. Marin, Model-based design of the polymer microstructure: bridging the gap between polymer chemistry and engineering, Polym. Chem. 6 (2015) 7081–7096. P.H.M. Van Steenberge, D.R. D’hooge, Y. Wang, M. Zhong, M.-F. Reyniers, D. Konkolewicz, K. Matyjaszewski, G.B. Marin, Linear Gradient Quality of ATRP Copolymers, Macromolecules. 45 (2012) 8519–8531. doi:10.1021/ma3017597. P.H.M. Van Steenberge, D.R. D, M. Reyniers, G.B. Marin, Improved kinetic Monte Carlo simulation of chemical composition-chain length distributions in polymerization processes, Chem. Eng. Sci. 110 (2014) 185–199. doi:10.1016/j.ces.2014.01.019. Li, 2018, Tuning the molecular weight distribution from atom transfer radical polymerization using deep reinforcement learning, Mol. Syst. Des. Eng., 3, 496, 10.1039/C7ME00131B Hu, 2017, Applications of artificial intelligence in intelligent manufacturing: a review, Front. Inf. Technol. Electron. Eng., 18, 86, 10.1631/FITEE.1601885 Srivastava, 2019, Control of continuous stirred tank reactor (CSTR) using nature inspired algorithms, J. Inf. Optim. Sci., 40, 329 Goud, 2019, Investigations on Metaheuristic Algorithm for Designing Adaptive PID Controller for Continuous Stirred Tank Reactor, Mapan - J. Metrol. Soc. India., 34, 113 Prokop, 2019, Robust control of continuous stirred tank reactor with jacket cooling, Chem. Eng. Trans., 76, 787 Husseinzadeh Kashan, 2010, An effective hybrid multi-objective genetic algorithm for bi-criteria scheduling on a single batch processing machine with non-identical job sizes, Eng. Appl. Artif. Intell., 23, 911, 10.1016/j.engappai.2010.01.031 Muñoz, 2010, Towards an ontological infrastructure for chemical batch process management, Comput. Chem. Eng., 34, 668, 10.1016/j.compchemeng.2009.12.009 De Oliveira, 2013, Application of artificial intelligence techniques in modeling and control of a nuclear power plant pressurizer system, Prog. Nucl. Energy., 63, 71, 10.1016/j.pnucene.2012.11.005 Zamen, 2019, Optimization methods using artificial intelligence algorithms to estimate thermal efficiency of PV/T system, Energy Sci. Eng., 7, 821, 10.1002/ese3.312 Cong, 2013, Applications of ANNs in flow and heat transfer problems in nuclear engineering: A review work, Prog. Nucl. Energy., 62, 54, 10.1016/j.pnucene.2012.09.003 Ng, 2004, Hybrid neural network - prior knowledge model in temperature control of a semi-batch polymerization process, Chem. Eng. Process. Process Intensif., 43, 559, 10.1016/S0255-2701(03)00109-0 Fernandes, 2005, Neural network Applications in polymerization processes, Brazilian J. Chem. Eng., 22, 401, 10.1590/S0104-66322005000300009 Tian, 2001, Modeling and optimal control of a batch polymerization reactor using a hybrid stacked recurrent neural network model, Ind. Eng. Chem. Res., 40, 4525, 10.1021/ie0010565 Hosen, 2011, Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): An experimental investigation, Control Eng. Pract., 19, 454, 10.1016/j.conengprac.2011.01.007 Karas, 2017, Artificial Neural Network Approach to Modeling of Polypropylene Reactor, Int. J. Adv. Chem., 3, 01, 10.5121/ijac.2017.3401 Kuroda, 2002, Neural network modeling of temperature behavior in an exothermic polymerization process, Neurocomputing., 43, 77, 10.1016/S0925-2312(01)00621-X Zhang, 2003, Artificial neural networks applied to polymer composites: A review, Compos. Sci. Technol., 63, 2029, 10.1016/S0266-3538(03)00106-4 Pakalapati, 2019, Optimization and modelling of enzymatic polymerization of ε-caprolactone to polycaprolactone using Candida Antartica Lipase B with response surface methodology and artificial neural network, Enzyme Microb. Technol., 122, 7, 10.1016/j.enzmictec.2018.12.001 Fernandes, 2004, Inverse modeling applications in emulsion polymerization of vinyl acetate, Chem. Eng. Sci., 59, 3159, 10.1016/j.ces.2004.04.003 Fernandes, 2002, Application of neural networks for the definition of the operating conditions of fluidized bed polymerization reactors, Polym. React. Eng., 10, 181, 10.1081/PRE-120014695 Preturlan, 2016, Numerical simulation and parametric study of solution ARGET ATRP of styrene, Comput. Mater. Sci., 124, 211, 10.1016/j.commatsci.2016.07.038 Vieira, 2013, Simulation of the Equilibrium Constant Effect on the Kinetics and Average Properties of Polystyrene Obtained by ATRP, J. Braz. Chem. Soc., 24, 2008 Belincanta-Ximenes, 2007, Simulation of Styrene Polymerization by Monomolecular and Bimolecular Nitroxide-Mediated Radical Processes over a Range of Reaction Conditions, Macromol. Theory Simulations., 16, 194, 10.1002/mats.200600063 Vieira, 2016, Optimization of reaction conditions in functionalized polystyrene synthesis via ATRP by simulations and factorial design, Polym. Bull., 73, 1795, 10.1007/s00289-015-1577-z D. Devlaminck, P. Van Steenberge, M.-F. Reyniers, D. D’hooge, Modeling of Miniemulsion Polymerization of Styrene with Macro-RAFT Agents to Theoretically Compare Slow Fragmentation, Ideal Exchange and Cross-Termination Cases, Polymers (Basel). 11 (2019) 320. doi:10.3390/polym11020320. L. Bentein, D.R. D’hooge, M.-F. Reyniers, G.B. Marin, Kinetic Modeling as a Tool to Understand and Improve the Nitroxide Mediated Polymerization of Styrene, Macromol. Theory Simulations. 20 (2011) 238–265. doi:10.1002/mats.201000081. D.R. D’hooge, M.-F. Reyniers, G.B. Marin, The Crucial Role of Diffusional Limitations in Controlled Radical Polymerization, Macromol. React. Eng. 7 (2013) 362–379. doi:10.1002/mren.201300006. Li, 2011, Kinetics and Modeling of Solution ARGET ATRP of Styrene, Butyl Acrylate, and Methyl Methacrylate, Macromol. React. Eng., 5, 467, 10.1002/mren.201100024 Brandup, 1999 Y. Fu, A. Mirzaei, M.F. Cunningham, R. a. Hutchinson, Atom-Transfer Radical Batch and Semibatch Polymerization of Styrene, Macromol. React. Eng. 1 (2007) 425–439. doi:10.1002/mren.200700010. Ray, 1972, On the Mathematical Modeling of Polymerization Reactors, J. Macromol. Sci. Part C Polym. Rev., 8, 1, 10.1080/15321797208068168 Vieira, 2015, Styrene ATRP Using the New Initiator 2,2,2-Tribromoethanol: Experimental and Simulation Approach, Polym. Eng. Sci., 55, 2270, 10.1002/pen.24113 D.R. D’hooge, M.-F. Reyniers, G.B. Marin, Methodology for Kinetic Modeling of Atom Transfer Radical Polymerization, Macromol. React. Eng. 3 (2009) 185–209. doi:10.1002/mren.200800051. Haykin, 2001 Queffelec, 2000, Optimization of Atom Transfer Radical Polymerization Using Cu(I)/Tris(2-(dimethylamino)ethyl)amine as a Catalyst, Macromolecules., 33, 8629, 10.1021/ma000871t Kamigaito, 2001, Metal-catalyzed living radical polymerization Vieira, 2016, Simulation of temperature effect on the structure control of polystyrene obtained by atom-transfer radical polymerization, Polímeros., 26, 313, 10.1590/0104-1428.2376 Vieira, 2016, Kinetic modeling of atom-transfer radical polymerization: inclusion of break reactions in the mechanism, Polym. Bull., 73, 2105, 10.1007/s00289-015-1596-9 Matyjaszewski, 2006, Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents, Proc. Natl. Acad. Sci., 103, 15309, 10.1073/pnas.0602675103 Edmondson, 2012, Applying ARGET ATRP to the Growth of Polymer Brush Thin Films by Surface-initiated Polymerization, Aldrich, Mater. Sci., 12 Jakubowski, 2006, Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers, Angew. Chemie - Int. Ed., 45, 4482, 10.1002/anie.200600272 R.D. Dagmar, P.H.M. Van Steenberge, M. Reyniers, G.B. Marin, Fed-Batch Control and Visualization of Monomer Sequences of Individual ICAR ATRP Gradient Copolymer Chains, (2014) 1074–1095. doi:10.3390/polym6041074. S.K. Fierens, R.D. Dagmar, P.H.M. Van Steenberge, M. Reyniers, G.B. Marin, Exploring the Full Potential of Reversible Deactivation Radical Polymerization Using Pareto-Optimal Fronts, (2015) 655–679. doi:10.3390/polym7040655.